如图所示.此两个三角形全等.其中某些边的长度及某些角的度数已知.则 查看更多

 

题目列表(包括答案和解析)

(2013•临汾二模)操作与证明
把两个全等的含45°角的三角板按如图所示的位置放置,使B、A、D在一条直线上,C、A、E在一条直线上,过点C作CM⊥BD于M,过点E作EF∥BD;直线CM与EF相交于点F.
(1)求证:△CEF是等腰直角三角形.
猜想与发现
(2)在图1的条件下,CF与BD的数量关系为
CF=
1
2
BD
CF=
1
2
BD

(3)如图2若把图1中Rt△ADE换为Rt△ABC不全等但相似的三角板时,其他条件不变,此时CF与BD的数量关系为
CF=
1
2
BD
CF=
1
2
BD

拓展与探究
(4)如图3若将图1中的两块三角板换成任意两个全等的直角三角形(Rt△ABC≌Rt△DAE),使锐角顶点A重合,点C、A、E在一条直线上,连接BD交AC于G,过点C作CM⊥BD于M,过点E作EF∥BD,直线CM与EF于点F,图1中CF与BD的数量关系还成立吗?若成立,请加以证明;若不成立,请说明你的理由.

查看答案和解析>>

数学活动——求重叠部分的面积。

问题情境:数学活动课上,老师出示了一个问题:

如图,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G。

求重叠部分(△DCG)的面积。

(1)独立思考:请解答老师提出的问题。

(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图(2),你能求出重叠部分(△DGH)的面积吗?请写出解答过程。

(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题。“爱心”小组提出的问题是:如图(3),将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN求重叠部分(△DMN)的面积、

任务:①请解决“爱心”小组所提出的问题,直接写出△DMN的面积是    

②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图中画出图形,标明字母,不必解答(注:也可在图(1)的基础上按顺时针方向旋转)。

查看答案和解析>>

重庆一中注重对学生的综合素质培养,每期都将开展丰富多彩的课外活动.3月中旬,在满园的樱花树下,初一、二年级举行了“让我们一起静听花开的声音”大型诗歌朗诵会,年级各班级积极参与.学校为鼓励同学们的积极性,对参与班级进行了奖励,分设一、二、三、四等级奖励,在给予精神奖励的同时也给与一定的物质奖励,为各个等级购买了一个相应的奖品.根据获奖情况,某初三同学绘制出如下两幅不完整的统计图,四个等级奖励的奖品价格用表格表示.
等级
价格(元/个)
一等
100
二等
60
三等
40
四等
20

获奖情况扇形统计图              获奖情况条形统计图
(1)两年级共有          个班级参加此次活动,其中获得二等奖的班级有         个,请补全条形统计图;
(2)在扇形统计图中,三等奖所在扇形的圆心角的度数是     度,这些奖品的平均价格是     元;
(3)在此次活动中,获得一等奖的班级中有两个班级来自初一年级,获得二等奖的班级中也只有两个班级来自初一年级.学校准备从获得一、二等奖的班级中各选出一个班级代表学校参加区级比赛,请你用画树状图或列表格的方法求出所选班级来自同一年级的概率.

查看答案和解析>>

数学活动——求重叠部分的面积.

问题情境:数学活动课上,老师出示了一个问题:

如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G.求重叠部分(△DCG)的面积.

(1)独立思考:请解答老师提出的问题.

(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,你能求出重叠部分(△DGH)的面积吗?请写出解答过程.

(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN求重叠部分(△DMN)的面积、

任务:①请解决“爱心”小组所提出的问题,直接写出△DMN的面积是________.

②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图中画出图形,标明字母,不必解答(注:也可在图(1)的基础上按顺时针方向旋转).

查看答案和解析>>

有两个全等的等腰直角三角板ABC和EFG(其直角边长均为6)如图1所示叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转,旋转角α满足0<α°<90°,四边形CHGK是旋转过程中两块三角板的重叠部分(如图2).
(1)在上述旋转过程中,①BH与CK有怎样的数量关系?②四边形CHGK的面积是否发生变化?并证明你发现的结论.
(2)如图3,连接KH,在上述旋转过程中,是否存在某一位置使△GKH的面积恰好等于△ABC面积的
518
?若存在,请求出此时KC的长度;若不存在,请说明理由.
精英家教网

查看答案和解析>>


同步练习册答案