如图,A.B.C.D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC的长. 查看更多

 

题目列表(包括答案和解析)

如图,在直角坐标系中,O为坐标原点,矩形ABCD的边AD与x轴的正半轴重合,另三边都在第四象限内,已知点A(1,0),AB=2,AD=3,点E为OD的中点,以AD为直径作⊙M,经过A、D两点的抛物线y=ax2+bx+c的精英家教网顶点为P.
(1)求经过C、E两点的直线的解析式;
(2)如果点P同时在⊙M和矩形ABCD内部,求a的取值范围;
(3)过点B作⊙M的切线交边CD于F点,当PF∥AD时,判断直线CE与y轴的交点是否在抛物线上,并说明理由.

查看答案和解析>>

如图,在平行四边形ABCD中,P是CD边上的一点,AP与BP分别平分∠DAB和∠CBA,若AD=50mm,AP=80mm.
(1)判断△APB是什么三角形,证明你的结论;
(2)比较DP与PC的大小;
(3)画出以AB为直径的⊙O,交AD于点E,连接BE与AP交于点F,求tan∠AFE的值;
(4)点O′在线段AB上移动,以O’为圆心作⊙O′,使⊙O′与边AP相切,切点为M,设⊙O′的半径为m,当m为何值时,⊙O′与AP、BF都相切?

查看答案和解析>>

如图,在直角坐标系中,O为坐标原点,矩形ABCD的边AD与x轴的正半轴重合,另三边都在第四象限内,已知点A(1,0),AB=2,AD=3,点E为OD的中点,以AD为直径作⊙M,经过A、D两点的抛物线y=ax2+bx+c的顶点为P.
(1)求经过C、E两点的直线的解析式;
(2)如果点P同时在⊙M和矩形ABCD内部,求a的取值范围;
(3)过点B作⊙M的切线交边CD于F点,当PF∥AD时,判断直线CE与y轴的交点是否在抛物线上,并说明理由.

查看答案和解析>>

如图,在直角坐标系中,O为坐标原点,矩形ABCD的边AD与x轴的正半轴重合,另三边都在第四象限内,已知点A(1,0),AB=2,AD=3,点E为OD的中点,以AD为直径作⊙M,经过A、D两点的抛物线y=ax2+bx+c的顶点为P.
(1)求经过C、E两点的直线的解析式;
(2)如果点P同时在⊙M和矩形ABCD内部,求a的取值范围;
(3)过点B作⊙M的切线交边CD于F点,当PF∥AD时,判断直线CE与y轴的交点是否在抛物线上,并说明理由.

查看答案和解析>>

如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,若∠ABC=∠CAD,求弦AC的长.

 

查看答案和解析>>


同步练习册答案