如图所示.函数的图像与轴只有一个交点.则交点的横坐标 . 查看更多

 

题目列表(包括答案和解析)

如图所示,函数的图像与轴只有一个交点,则交点的横坐标              

 

查看答案和解析>>

已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y=-的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限另一个正方形的顶点M1在第二象限.

(1)如图所示,若反比例函数解析式为y=-P点坐标为(1,0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)M1的坐标是________

(2)请你通过改变P点坐标,对直线M1M的解析式ykxb进行探究可得k________,若点P的坐标为(m,0)时,则b________

(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

查看答案和解析>>

已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边长作正方形PQMN,使点M落在反比例函数的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限;

(1)如图所示,点P坐标为(1,0),图中已画出一个符合条件的正方形PQMN,请你在图中画出符合条件的另一个正方形,并写出点M1的坐标;

(2)请你通过改变P点的坐标,对直线M1M的解析式ykxb进行探究:

①写出k的值;

②若点P的坐标为(m,0),求b的值;

(3)依据(2)的规律,如果点P的坐标为(8,0),请你求出点M1和点M的坐标.

查看答案和解析>>

已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边长作正方形PQMN,使点M落在反比例函数的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点在第二象限;

(1) 如图7所示,点P坐标为(1,0),图中已画出一个符合条件的正方形PQMN,请你在图中画出符合条件的另一个正方形,并写出点的坐标;

(2) 请你通过改变P点的坐标,对直线M的解析式ykxb进行探究:

①写出k的值;

②若点P的坐标为(m,0),求b的值;

(3) 依据(2)的规律,如果点P的坐标为(8,0),请你求出点和点M的坐标.


查看答案和解析>>

已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边长作正方形PQMN,使点M落在反比例函数的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点在第二象限;
(1)如图所示,点P坐标为(1,0),图中已画出一个符合条件的正方形PQMN,请你在图中画出符合条件的另一个正方形,并写出点的坐标;
(2)请你通过改变P点的坐标,对直线M的解析式y﹦kx+b进行探究:
①k=             
②若点P的坐标为(m,0),则b=             
(3)依据(2)的规律,如果点P的坐标为(8,0),请你求出点和点M的坐标.

查看答案和解析>>


同步练习册答案