二次函数.通过配方化为的形为 . 查看更多

 

题目列表(包括答案和解析)

已知二次函数y=x2-4x+2.
(1)通过配方把函数化为y=a(x+h)2+k的形式;
(2)写出函数图象的开口方向,对称轴及顶点坐标;
(3)这个函数图象可以由抛物线y=x2经过怎样平移得到?

查看答案和解析>>

已知二次函数y=-2x2+8x-6,通过配方化为y=a(x-h)2+k的形式,为________.

查看答案和解析>>

已知二次函数yx2+8x-6,通过配方法化为ya(xh)2k的形式为________.

查看答案和解析>>

问题情境

已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?

数学模型

设该矩形的一边长为x,周长为y,则y与x的函数关系式为________.

探索研究

(1)我们可以借鉴以前研究函数的经验,先探索函数的图象性质.

①填写下表,画出函数的图象:

②观察图象,试描述该函数的增减性(y随x变化发生什么变化);

③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过_______配方得到.请你通过配方求函数(x>0)的最小值.

解决问题

(2)用上述方法解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

问题背景
若矩形的周长为1 ,则可求出该矩形面积的最大值. 我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:(x﹥0),利用函数的图象或通过配方均可求得该函数的最大值。
提出新问题
若矩形的面积为1 ,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:(x﹥0),问题就转化为研究该函数的最大(小)值了。
解决问题
借鉴我们已有的研究函数的经验,探索函数(x﹥0)的最大(小)值。
(1)实践操作:填写下表,并用描点法画出函数(x﹥0)的图象:
(2 )观察猜想:观察该函数的图象,猜想当x=         时,函数(x﹥0)有最    (填“大”或“小”)是            
(3)推理论证:问题背景中提到,通过配方可求二次函数(x﹥0)的最大值,请你尝试通过配方求函数(x﹥0)的最大(小)值,以证明你的猜想。〔提示:当x>0时,x=

查看答案和解析>>


同步练习册答案