3.如图,锐角三角形ABC中,AH⊥BC,垂足为H,E.D.F分别是各边的中点,则四边形EDHF是( ) A.梯形 B.等腰梯形 C.直角梯形 D.矩形 查看更多

 

题目列表(包括答案和解析)

阅读下列材料:
   李老师提出一个问题:“已知:如图1,AB=m(m>0),∠BAC=α(α为锐角),在射线AC上取一点D,使构成的△ABD唯一确定,试确定线段BD的取值范围.”
   小明同学说出了自己的解题思路:以点B为圆心,以m为半径画圆(如图2所示),D为⊙B与射线AC的交点(不与点A重合),连结BD,所以,当BD=m时,构成的△ABD是唯一确定的.
    李老师说:“小明同学画出的三角形是正确的,但是他的解答不够全面.”

对于李老师所提出的问题,请给出你认为正确的解答(写出BD的取值范围,并在备用图中画出对应的图形,不写作法,保留作图痕迹).

查看答案和解析>>

阅读下列材料:
李老师提出一个问题: “已知:如图1,AB=m(m>0),∠BAC=α(α为锐角),在射线AC上取一点D。使构成的△ABD唯一确定,试确定线段BD的取值范围。”
小明同学说出了自己的解题思路:以点B为圆心,以m为半径画圆(如图2所示),D为⊙B与射线AC的交点(不与点A重合),连结BD。所以,当BD=m时,构成的△ABD是唯一确定的。
李老师说:“小明同学画出的三角形是正确的,但是他的解答不够全面。”
对于李老师所提出的问题,请给出你认为正确的解答(写出BD的取值范围,并在备用图中画出对应的图形,不写作法,保留作图痕迹)。

查看答案和解析>>

在研究三角形内角和等于180°的证明方法时,小明和小虎分别给出了下列证法.

小明:在△ABC中,延长BC到D,

∴∠ACD=∠A+∠B(三角形一个外角等于和它不相邻的两个内角的和).

又∵∠ACD+∠ACB=180°(平角定义),

∴∠A+∠B+∠ACB=180°(等式的性质).

小虎:在△ABC中,作CD⊥AB(如图),

∵CD⊥AB(已知),

∴∠ADC=∠BDC=90°(直角定义).

∴∠A+∠ACD=90°,∠B+∠BCD=90°(直角三角形两锐角互余).

∴∠A+∠ACD+∠B+∠BCD=180°(等式的性质).

∴∠A+∠B+∠ACB=180°.

请你判断上述两名同学的证法是否正确,如果不正确,写出一种你认为较简单的证明三角形内角和定理的方法,与同伴交流.

查看答案和解析>>

已知:△ABC的高AD所在直线与高BE所在直线相交于点F.
(1)如图1,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB于点G,求证:FG+DC=AD;
(2)如图2,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD之间满足的数量关系是
 

(3)在(2)的条件下,若AG=5
2
,DC=3,将一个45°角的顶点与点B重合并绕点B旋转,这个角的两边分别交线段FG于M、N两点(如图3),连接CF,线段CF分别与线段BM、线段BN相交于P、Q两点,若NG=
3
2
,求线段PQ的长.
精英家教网

查看答案和解析>>


同步练习册答案