4.若已知抛物线的顶点为则二次函数的关系式可设为y = a 2+k . 课内同步精练 ●A组 基础练习 查看更多

 

题目列表(包括答案和解析)

已知抛物线y=ax2-(a+c)x+c(其中a≠c且a≠0).
(1)求此抛物线与x轴的交点坐标;(用a,c的代数式表示)
(2)若经过此抛物线顶点A的直线y=-x+k与此抛物线的另一个交点为B(
a+c
a
,-c),求此抛物线的解析式;
(3)点P在(2)中x轴上方的抛物线上,直线y=-x+k与 y轴的交点为C,若tan∠POB=
1
4
tan∠POC,求点P的坐标;
(4)若(2)中的二次函数的自变量x在n≤x<n+1(n为正整数)的范围内取值时,记它的整数函数值的个数为N,则N关于n的函数关系式为
 

查看答案和解析>>

已知抛物线y=ax2-(a+c)x+c(其中a≠c且a≠0).
(1)求此抛物线与x轴的交点坐标;(用a,c的代数式表示)
(2)若经过此抛物线顶点A的直线y=-x+k与此抛物线的另一个交点为B(数学公式,-c),求此抛物线的解析式;
(3)点P在(2)中x轴上方的抛物线上,直线y=-x+k与 y轴的交点为C,若tan∠POB=数学公式tan∠POC,求点P的坐标;
(4)若(2)中的二次函数的自变量x在n≤x<n+1(n为正整数)的范围内取值时,记它的整数函数值的个数为N,则N关于n的函数关系式为______.

查看答案和解析>>

已知抛物线y=ax2+2x+3(a≠0)有如下两个特点:①无论实数a怎样变化,其顶点都在某一条直线l上;②若把顶点的横坐标减少数学公式,纵坐标增大数学公式分别作为点A的横、纵坐标;把顶点的横坐标增加数学公式,纵坐标增加数学公式分别作为点B的横、纵坐标,则A,B两点也在抛物线y=ax2+2x+3(a≠0)上.
(1)求出当实数a变化时,抛物线y=ax2+2x+3(a≠0)的顶点所在直线l的解析式;
(2)请找出在直线l上但不是该抛物线顶点的所有点,并说明理由;
(3)你能根据特点②的启示,对一般二次函数y=ax2+bx+c(a≠0)提出一个猜想吗?请用数学语言把你的猜想表达出来,并给予证明.

查看答案和解析>>

已知抛物线y=ax2+2x+3(a≠0)有如下两个特点:①无论实数a怎样变化,其顶点都在某一条直线l上;②若把顶点的横坐标减少,纵坐标增大分别作为点A的横、纵坐标;把顶点的横坐标增加,纵坐标增加分别作为点B的横、纵坐标,则A,B两点也在抛物线y=ax2+2x+3(a≠0)上。
(1)求出当实数a变化时,抛物线y=ax2+2x+3(a≠0)的顶点所在直线l的解析式;
(2)请找出在直线l上但不是该抛物线顶点的所有点,并说明理由;
(3)你能根据特点②的启示,对一般二次函数y=ax2+bx+c(a≠0)提出一个猜想吗?请用数学语言把你的猜想表达出来,并给予证明。

查看答案和解析>>

 已知抛物线(其中a ca ≠0).

   (1)求此抛物线与x轴的交点坐标;(用ac的代数式表示)

(2)若经过此抛物线顶点A的直线与此抛物线的另一个交点为

     求此抛物线的解析式;

(3)点P在(2)中x轴上方的抛物线上,直线y轴的交点为C,若

,求点P的坐标;

(4)若(2)中的二次函数的自变量xnxn为正整数)的范围内取值时,记它的整数函数值的个数为N N关于n的函数关系式为        .

查看答案和解析>>


同步练习册答案