2.如图1.是的内接三角形.那么图中为等腰三角形的是 . 查看更多

 

题目列表(包括答案和解析)

28、如图,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他有没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接CF,再找出CF的中点O,然后连接EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF.以下是他的想法,请你填上根据.
小华是这样想的:因为CF和BE相交于点O,
根据
对顶角相等
得出∠COB=∠EOF;
而O是CF的中点,那么CO=FO,又已知EO=BO,
根据
两边对应相等且夹角相等的两三角形全等
得出△COB≌△FOE,
根据
全等三角形对应边相等
得出BC=EF,
根据
全等三角形对应角相等
得出∠BCO=∠F,
既然∠BCO=∠F根据
内错角相等,两直线平行
、得出AB∥DF,
既然AB∥DF,根据
两直线平行,同旁内角互补
.得出∠ACE和∠DEC互补.

查看答案和解析>>

精英家教网如图,△ABC是一个等腰直角三角形,DEFG是其内接正方形,H是正方形的对角线交点;那么,由图中的线段所构成的三角形中相互全等的三角形的对数为(  )
A、12B、13C、26D、30

查看答案和解析>>

如图①,P为△ABC内一点,连接PA,PB,PC,在△PAB,△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
已知△ABC中,∠A<∠B<∠C
(1)利用直尺和圆规,在图②中作出△ABC的自相似点P(不写作法,但需保留作图痕迹);
(2)若△ABC的三内角平分线的交点P是该三角形的自相似点,求该三角形三个内角的度数.

查看答案和解析>>

 如图①,P为△ABC内一点,连接PA,PB,PC,在△PAB,△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.

已知△ABC中,∠A<∠B<∠C

(1)利用直尺和圆规,在图②中作出△ABC的自相似点P(不写作法,但需保留作图痕迹);

(2)若△ABC的三内角平分线的交点P是该三角形的自相似点,求该三角形三个内角的度数.

 

查看答案和解析>>

如图①,P为△ABC内一点,连接PAPBPC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点

⑴如图②,已知RtABC中,∠ACB=90°,∠ACB>∠ACDAB上的中线,过点BBECD,垂足为E,试说明E是△ABC的自相似点.

⑵在△ABC中,∠A<∠B<∠C

①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);

②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.

【根据2011江津市中考试第17题改编】

查看答案和解析>>


同步练习册答案