2.解(1)由已知条件可得:解得 可得如图3所示的表. 查看更多

 

题目列表(包括答案和解析)

已知,A(3,a)是双曲线y= 上的点,O是原点,延长线段AO交双曲线于另一点B,又过B点作BK⊥x轴于K.
(1)试求a的值与点B坐标;
(2)在直角坐标系中,先使线段AB沿x轴的正方向平移6个单位,得线段A1B1,再依次在与y轴平行的方向上进行第二次平移,得线段A2B2,且可知两次平移中线段AB先后滑过的面积相等(即?AA1B1B与?A1A2B2B1的面积相等).求出满足条件的点A2的坐标,并说明△AA1A2与△OBK是否相似的理由;
(3)设线段AB中点为M,又如果使线段AB与双曲线一起移动,且AB在平移时,M点始终在抛物线y= (x-6)2-6上,试判断线段AB在平移的过程中,动点A所在的函数图象的解析式;(无需过程,直接写出结果.)
(4)试探究:在(3)基础上,如果线段AB按如图2所示方向滑过的面积为24个平方单位,且M点始终在直线x=6的左侧,试求此时线段AB所在直线与x轴交点的坐标,以及M点的横坐标.

查看答案和解析>>

已知,A(3,a)是双曲线y= 上的点,O是原点,延长线段AO交双曲线于另一点B,又过B点作BK⊥x轴于K.

(1)试求a的值与点B坐标;

(2)在直角坐标系中,先使线段AB沿x轴的正方向平移6个单位,得线段A1B1,再依次在与y轴平行的方向上进行第二次平移,得线段A2B2,且可知两次平移中线段AB先后滑过的面积相等(即▱AA1B1B与▱A1A2B2B1的面积相等).求出满足条件的点A2的坐标,并说明△AA1A2与△OBK是否相似的理由;

(3)设线段AB中点为M,又如果使线段AB与双曲线一起移动,且AB在平移时,M点始终在抛物线y= (x-6)2-6上,试判断线段AB在平移的过程中,动点A所在的函数图象的解析式;(无需过程,直接写出结果.)

(4)试探究:在(3)基础上,如果线段AB按如图2所示方向滑过的面积为24个平方单位,且M点始终在直线x=6的左侧,试求此时线段AB所在直线与x轴交点的坐标,以及M点的横坐标.

 

查看答案和解析>>

  已知△ABC中,∠BAC=90°, AB=AC. (1)(5分)如图,D为AC上任一点,连接BD,过A点作BD的垂线交过C点与AB平行的直线CE于点E.求证:BD=AE.

 

 

 

(2)(6分) 若点D在AC的延长线上,如图,其他条件同(1),请画出此时的图形,并猜想BD与AE是否仍然相等?说明你的理由.

 

【解析】(1)先证∠ABD=∠CAE,再证△ABD≌△CAE即可得出答案.

(2)根据题意画出图形,然后可根据△ABD≌△ACE得出结论

 

查看答案和解析>>

  已知△ABC中,∠BAC=90°, AB=AC. (1)(5分) 如图,D为AC上任一点,连接BD,过A点作BD的垂线交过C点与AB平行的直线CE于点E.求证:BD=AE.

 

 

 

(2)(6分) 若点D在AC的延长线上,如图,其他条件同(1),请画出此时的图形,并猜想BD与AE是否仍然相等?说明你的理由.

 

【解析】(1)先证∠ABD=∠CAE,再证△ABD≌△CAE即可得出答案.

(2)根据题意画出图形,然后可根据△ABD≌△ACE得出结论

 

查看答案和解析>>

为了使同学们更好地解答本题,我们提供了思路点拨,你可以依照这个思路填空,并完成本题解答的全过程,当然你也可以不填空,只需按照解答的一般要求,进行解答即可.
如图,已知AB=AD,∠BAD=60°,∠BCD=120°,延长BC,使CE=CD,连接DE,求证:BC+DC=AC.
思路点拨:
(1)由已知条件AB=AD,∠BAD=60°,可知:△ABD是
等边
等边
三角形;
(2)同理由已知条件∠BCD=120°得到∠DCE=
60°
60°
,且CE=CD,可知
△DCE是等边三角形
△DCE是等边三角形

(3)要证BC+DC=AC,可将问题转化为两条线段相等,即
AC
AC
=
BE
BE

(4)要证(3)中所填写的两条线段相等,可以先证明….请你完成证明过程:

查看答案和解析>>


同步练习册答案