题目列表(包括答案和解析)
解:(1)由抛物线C1:得顶点P的坐标为(2,5)………….1分
∵点A(-1,0)在抛物线C1上∴.………………2分
(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G..
∵点P、M关于点A成中心对称,
∴PM过点A,且PA=MA..
∴△PAH≌△MAG..
∴MG=PH=5,AG=AH=3.
∴顶点M的坐标为(,5).………………………3分
∵抛物线C2与C1关于x轴对称,抛物线C3由C2平移得到
∴抛物线C3的表达式. …………4分
(3)∵抛物线C4由C1绕x轴上的点Q旋转180°得到
∴顶点N、P关于点Q成中心对称.
由(2)得点N的纵坐标为5.
设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PR⊥NG于R.
∵旋转中心Q在x轴上,
∴EF=AB=2AH=6.
∴EG=3,点E坐标为(,0),H坐标为(2,0),R坐标为(m,-5).
根据勾股定理,得
①当∠PNE=90º时,PN2+ NE2=PE2,
解得m=,∴N点坐标为(,5)
②当∠PEN=90º时,PE2+ NE2=PN2,
解得m=,∴N点坐标为(,5).
③∵PN>NR=10>NE,∴∠NPE≠90º ………7分
综上所得,当N点坐标为(,5)或(,5)时,以点P、N、E为顶点的三角形是直角三角形.…………………………………………………………………………………8分
已知双曲线与直线相交于A、B两点.第一象限上的点M()在双曲线上(在A点左侧).过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及的值;
(2)若B是CD的中点,四边形OBCE的面积为4,求此时M点的坐标;
(3)在(2)的条件下,设直线AM分别与x轴、y轴相交于点P、Q两点,求MA:PQ的值.
【解析】(1)根据B点的横坐标为-8,代入y=1/4x中,得y=-2,得出B点的坐标,即可得出A点的坐标,再根据k=xy求出即可;
(2)根据S矩形DCNO=2mn=2k,S△DBO= mn= k,S△OEN= mn= 2k,即可得出k的值,
(3)首先求出直线MA解析式,再利用相似或勾股定理解得
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com