实践与探索
我们知道对于|x-2|,当x=2时有最小值0;那么对于|x-1|+|3-x|来说,当x取多少时,整个式子有最小值呢?我们不妨这样来考虑,先找零点1,3(即使x-1=0,3-x=0的值),再在同一数轴上表示出来,如
这样就可以得到x<1,1≤x<3,x>3三种情况:
①当x<1时,则x-1<0,3-x>0,即|x-1|+|3-x|=1-x+3-x=4-2x>2;
②当1≤x<3时,则x-1≥0,3-x>0,即|x-1|+|3-x|=x-1+3-x=2;
③当x≥3时,则x-1>0,3-x<0,即|x-1|+|3-x|=x-1+x-3=2x-4>2;
综上所述,当1≤x<3时,|x-1|+|3-x|的最小值为2.
(1)请仿照上述过程求出|x+1|+|x-2|的最小值.
(2)试探索|x-1|+|x+2|+|x-3|的最小值.