一次函数的定义.图象.性质 y=kx+b是 函数.其图象是经过两点(0. )和(1. )一条直线. (1)当k>0时.y随x的增大而 .当k>0.且b>0时.图象经过第 象 限.其示意图是 ,当k>0且b<0时.图象经过第 象限.其示意图是 . (2)当k<0时.y随x的增大而 .当k<0且b>0时.图象经过第 象限.其示意图是 ,当k<0且b<0时.图象经过第 象限.其示意图是 . 查看更多

 

题目列表(包括答案和解析)

(2012•翔安区质检)定义[p,q]为一次函数y=px+q的特征数.
(1)若特征数为[2,k-2]的一次函数是正比例函数,求k的值;
(2)若特征数为[2,0]的一次函数图象与反比例函数y=
2x
图象交于A、B两点,则当x取何值时,正比例函数的值大于反比例函数的值?

查看答案和解析>>

阅读下面的材料:
在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行.
解答下面的问题:
(1)已知一次函数y=-2x的图象为直线l1,求过点P(1,4)且与已知直线l1平行的直线l2的函数表达式,并在坐标系中画出直线l1和l2的图象;
(2)设直线l2分别与y轴、x轴交于点A、B,过坐标原点O作OC⊥AB,垂足为C,求l1和l2两平行线之间的距离OC的长;
(3)若Q为OA上一动点,求QP+QB的最小值,并求取得最小值时Q点的坐标.

查看答案和解析>>

定义[p,q]为一次函数y=px+q的特征数.
(1)若特征数是[2,k-2]的一次函数为正比例函数,求k的值;
(2)设点A,B分别为抛物线y=(x+m)(x-2)与x,y轴的交点,其中m>0,且△OAB的面积为4,O为原点,求图象过A,B两点的一次函数的特征数.

查看答案和解析>>

阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2精英家教网我们就称直线l1与直线l2互相平行.解答下面的问题:
(1)求过点P(1,4)且与已知直线y=-2x-1平行的直线l的函数表达式,并画出直线l的图象;
(2)设直线l分别与y轴、x轴交于点A、B,如果直线m:y=kx+t(t>0)与直线l平行且交x轴于点C,求出△ABC的面积S关于t的函数表达式.

查看答案和解析>>

在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两知直线,给出它们平行的定义:
设一次函数y=k1x+b(k1≠0)的图象为直线l1,一次函数y=k2x+b(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行.如图,将直线y=4x沿y轴向下平移后,得到的直线与x轴交于点A(
9
4
,0
),与精英家教网双曲线y=
k
x
(x>0)交于点B.
(1)求直线AB的解析式;
(2)若点B的纵坐标为m,求双曲线解析式(用含m的代数式表示).

查看答案和解析>>


同步练习册答案