任画一个直角ABC.其中∠B=90º.取外一点P为旋转中心.按逆时针方向旋转60º.作出旋转后的三角形. 查看更多

 

题目列表(包括答案和解析)

20、任画一个直角△ABC,其中∠B=90°,取△ABC外一点P为旋转中心,按逆时针方向旋转60°,作出旋转后的三角形.

查看答案和解析>>

任画一个直角△ABC,其中∠B=90°,取△ABC外一点P为旋转中心,按逆时针方向旋转60°,作出旋转后的三角形.

查看答案和解析>>

任画一个直角△ABC,其中∠B=90°,取△ABC外一点P为旋转中心,按逆时针方向旋转60°,作出旋转后的三角形.

查看答案和解析>>

(1)教材在探索平方差公式时利用了面积法,面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为
1
2
ab+(a-b)2
由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.

(2)试用勾股定理解决以下问题:
如果直角三角形ABC的两直角边长为3和4,则斜边上的高为
12
5
12
5

(3)试构造一个图形,使它的面积能够解释(a-2b)2=a2-4ab+4b2,画在下面的网格中,并标出字母a、b所表示的线段.

查看答案和解析>>

【阅读理解】:若一条直线l把一个图形分成面积相等的两个图形,则称这样的直线l叫做这个图形的等积直线.如图①,直线l经过三角形ABC的顶点A和边BC的中点N,易知直线l将△ABC分成两个面积相等的图形,则称直线l为△ABC的等积直线.

根据上述内容解决以下问题:
(1)如图②,在矩形ABCD中,直线l经过AD、BC边的中点M、N,请你判断直线l是否为该矩形的等积直线.
 (填“是”或“否”)并在图②中再画出一条该矩形的等积直线;(不必写作法,保留作图痕迹)
(2)如图③,在梯形ABCD中,直线l经过AD、BC边的中点M、N,请你判断直线l是否为该梯形的等积直线.
;(填“是”或“否”)
(3)在图③中,过MN的中点O任做一条直线PQ分别交AD,BC于点P,Q(如图④),猜想PQ是否为该梯形的等积直线,若“是”请证明,若“不是”请说明理由;
【探索应用】:
李大爷家有一块五边形的土地如图⑤,已知∠A、∠B、∠C都是直角,AB∥CD,BC∥AE,现决定画一条线把五边形土地分为两
块,其中一块地用来改种核桃树,要求两块地面积相同,请你帮李大爷画出这条线,并判断这样的直线有多少条(保留作图痕迹,不必说明理由).

查看答案和解析>>


同步练习册答案