7.已知:函数是二次函数.求的值并写出此函数的解析式. 查看更多

 

题目列表(包括答案和解析)

已知:二次函数y=
1
2
x2-x-
3
2

(1)把这个二次函数表示成y=a(x-h)2+k的形式;
(2)写出抛物线y=
1
2
x2-x-
3
2
的顶点坐标和对称轴,并说明该抛物线是由哪一条形如y=ax2的抛物线经过怎样的变换得到的;
(3)试求出抛物线y=
1
2
x2-x-
3
2
与x轴的交点坐标;
(4)请直接回答:当x为何值时,代数式y=
1
2
x2-x-
3
2
的值是负数.

查看答案和解析>>

已知:二次函数y=
1
4
x2-
5
2
x+6
的图象与x轴从左到右的两个交点依次为A、B,与y轴交点为C;
(1)求A、B、C三点的坐标;
(2)求过B、C两点的一次函数的解析式;
(3)如果P(x,y)是线段BC上的动点,O为坐标原点,试求△POA的面积S与x之间的函数关系式,并求出自变量x的取值范围;
(4)是否存在这样的点P,使得PO=AO?若存在,求出点P的坐标;若不存在说明理由.

查看答案和解析>>

已知:一次函数y=-
12
x+2
的图象与x轴、y轴的交点分别为B、C,二次函数的关系式为y=ax2-3ax-4a(a<0).
(1)说明:二次函数的图象过B点,并求出二次函数的图象与x轴的另一个交点A的坐标;
(2)若二次函数图象的顶点,在一次函数图象的下方,求a的取值范围;
(3)若二次函数的图象过点C,则在此二次函数的图象上是否存在点D,使得△ABD是直角三角形?若存在,求出所有满足条件的点D坐标;若不存在,请说明理由.

查看答案和解析>>

已知:如图,抛物线y=ax2+bx+c与x轴相交于两点A(1,0),B(3,0)与y轴相交于点C(0,3),
(l)求抛物线的函数关系式;
(2)若点D(4,m)是抛物线y=ax2+bx+c上一点,请求出m的值,并求出此时△ABD的面积;
(3)若点A(x1,y1)、B(x2,y2)是该二次函数图象上的两点,且-1<x1<0,1<x2<2,试比较两函数值的大小:y1
y2
(4)若自变量x的取值范围是0≤x≤5,则函数值y的取值范围是
-1≤y≤8
-1≤y≤8

查看答案和解析>>

已知:如图,抛物线y=ax2+bx+c与x轴相交于两点A(1,0),B(3,0)与y轴相交于点C(0,3),
(l)求抛物线的函数关系式;
(2)若点D(4,m)是抛物线y=ax2+bx+c上一点,请求出m的值,并求出此时△ABD的面积;
(3)若点A(x1,y1)、B(x2,y2)是该二次函数图象上的两点,且-1<x1<0,1<x2<2,试比较两函数值的大小:y1______y2
(4)若自变量x的取值范围是0≤x≤5,则函数值y的取值范围是______.

查看答案和解析>>


同步练习册答案