1建立二次函数模型 第1题. 下列函数关系中.可以看作二次函数模型的是( ) A.在一定距离内.汽车行驶的速度与行使的时间的关系 B.我国人口自然增长率为1%.这样我国总人口数随年份变化的关系 C.矩形周长一定时.矩形面积和矩形边长之间的关系 D.圆的周长与半径之间的关系 答案:C 第2题. 下列两个量之间的关系不属于二次函数的是( ) A.速度一定时.汽车行使的路程与时间的关系 B.质量一定时.物体具有的动能和速度的关系 C.质量一定时.运动的物体所受到的阻力与运动速度的关系 D.从高空自由降落的物体.下降的高度与下降的时间的关系 答案:A 第3题. 写出下列函数关系式.并指出关系式中的自变量和函数: 圆锥的底面半径为定值r.则圆锥的体积V与圆锥的高h之间的关系 答案: 第4题. 已知正方形ABCD中.边长为4.E为AB边上的一动点.(E与A.B点不重合).设AE=x.以E为顶点的内接正方形的面积为y.求y与x的函数关系式.当x为何值时内接正方形的面积最小. 答案:.当时.内接正方形的面积最小 第5题. 等边三角形的周长为x.面积为y.用x表示y的关系式为y= . 答案: 第6题. 当m= 时.是关于x的二次函数. 答案:1 第7题. 写出下列函数的关系式:有一个角是60°的直角三角形的面积S与斜边x的之间的函数关系式. 答案: 第8题. 一台机器原价60万元.如果每年的折旧率均为x.两年后这台机器的价位约为y万元.则y与x的函数关系式为( ) A. B. C. D. 答案:A 第9题. 函数是二次函数的条件是( ) A.m.n是常数.且m≠0 B.m.n是常数.且m≠n C.m.n是常数.且n≠0 D.m.n可以为任何常数 答案:B 第10题. 一个圆柱的侧面展开图是一个面积为10的矩形.这个圆柱的母线与圆柱的底面半径r之间的函数关系是( ) A.正比例函数 B.反比例函数 C.一次函数 D.二次函数 答案:B 第11题. 下列不是二次函数的是( ) A. B. C. D. 答案:C 第12题. 若是二次函数.则( ) A.a=-1或a=3 B.a≠-1.a≠0 C.a=-1 D.a=3 答案:D 第13题. 如果水的流速量米/分.那么每分钟的进水量Q与所选择的水管直径D(米)之间的函数关系是 .其中自变量是 .常量是 . 答案:,D, 查看更多

 

题目列表(包括答案和解析)

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践--应用--探究的过程:
(1)实践:他们对一条公路上横截面为拋物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10m,隧道顶部最高处距地面6.25m,并画出了隧道截面图,建立了如图②所示的直角坐标系,请你求出抛物线的解析式.
(2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m.为了确保安全,问该隧道能否让最宽3m,最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?
(3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述拋物线模型,提出了以下两个问题,请予解答:
I.如图③,在抛物线内作矩形ABCD,使顶点C、D落在拋物线上,顶点A、B落在x轴 上.设矩形ABCD的周长为l求l的最大值.
II•如图④,过原点作一条y=x的直线OM,交抛物线于点M,交抛物线对称轴于点N,P 为直线0M上一动点,过P点作x轴的垂线交抛物线于点Q.问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

(2012•营口一模)[提出问题]:已知矩形的面积为1,当该矩形的长为多少时,它的周长最小?最小值是多少?
[建立数学模型]:设该矩形的长为x,周长为y,则y与x的函数关系式为y=x+
1
x
(x>0).
[探索研究]:我们可以借鉴以前研究函数的经验,先探索函数y=x+(x>0)的图象和性质.
①填写下表,画出函数的图象;
x
1
4
1
3
1
2
1 2 3 4
y
②观察图象,写出当自变量x取何值时,函数y=x+
1
x
(x>0)有最小值;
③我们在课堂上求二次函数最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
1
x
(x>0)的最小值.

查看答案和解析>>

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践——应用——探究的过程

(1)实践:他们对一条公路上横截面为抛物线的单向双车道的隧道进行测量,测得隧道的路面宽为10米,隧道顶部最高处距地面6.25米,并画出了隧道截面图,建立了如图所示的直角坐标系,请你求出抛物线的解析式

(2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖起方向上的高度差至少为0.5米,为了确保安全,问该隧道能否让最宽3米,最高3.5米的两辆车居中并列行驶(不考虑两车之间的空隙)?

(3)探究:该课题学习小组为进一步探究抛物线的有关知识,他们借助上述抛物线模型,提出了以下两个问题,请予解答:

①如图,在抛物线内作矩形ABCD,使顶点C、D落在抛物线上,顶点A、B落在x轴上,设矩形ABCD的周长为为l,求l的最大值

②如图,过原点作一条直线y=x,交抛物线于M,交抛物线的对称轴于N,P为直线OM上一动点,过点P作x轴的垂线交抛物线于点Q,问在直线OM上是否存在点P,使以点P、N、Q为顶点的三角形为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由

 

 

 

 

 

 

 

 

 

查看答案和解析>>

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践--应用--探究的过程:
(1)实践:他们对一条公路上横截面为拋物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10m,隧道顶部最高处距地面6.25m,并画出了隧道截面图,建立了如图②所示的直角坐标系,请你求出抛物线的解析式.
(2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m.为了确保安全,问该隧道能否让最宽3m,最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?
(3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述拋物线模型,提出了以下两个问题,请予解答:
I.如图③,在抛物线内作矩形ABCD,使顶点C、D落在拋物线上,顶点A、B落在x轴 上.设矩形ABCD的周长为l求l的最大值.
II•如图④,过原点作一条y=x的直线OM,交抛物线于点M,交抛物线对称轴于点N,P 为直线0M上一动点,过P点作x轴的垂线交抛物线于点Q.问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践一应用——探究的过程:

  (1)实践:他们对一条公路上横截面为抛物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10m.隧道顶部最高处距地面6.25m,并画出了隧道截面图.建立了如图②所示的直角坐标系.请你求出抛物线的解析式.

  (2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m.为了确保安全.问该隧道能否让最宽3m.最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?

  (3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述抛物线模型塑.提出了以下两个问题,请予解答:

Ⅰ.如图③,在抛物线内作矩形ABCD,使顶点C、D落在抛物线上.顶点A、B落在x轴上.设矩形ABCD的周长为,求的最大值。

Ⅱ.如图④,过原点作一条的直线OM,交抛物线于点M.交抛物线对称轴于点N,P为直线OM上一动点,过P点作x轴的垂线交抛物线于点Q。问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案