题目列表(包括答案和解析)
如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B(1,-5),D(4,0).
(1)求c,b(用含t的代数式表示):
(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.
①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;
②求△MPN的面积S与t的函数关系式,并求t为何值时,S=;
(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.
如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B(1,-5),D(4,0).
(1)求c,b(用含t的代数式表示):
(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.
①在点P的运动过程中,你认为cos∠AMP的大小是否会变化?若变化,说明理由;若不变,求出cos∠AMP的值;
②求△MPN的面积S与t的函数关系式,并求t为何值时,;
(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围是________.
如图,在直角坐标系中,点P的坐标是(n,0)(n>0),抛物线y=-x2+bx+c经过原点O和点P.已知正方形ABCD的三个顶点为A(2,2),B(3,2),D(2,3).
(1)求c,b并写出抛物线对称轴及y的最大值(用含有n的代数式表示);
(2)求证:抛物线的顶点在函数y=x2的图象上;
(3)若抛物线与直线AD交于点N,求n为何值时,△NPO的面积为1;
(4)若抛物线经过正方形区域ABCD(含边界),请直接写出n的取值范围.
[参考公式:y=ax2+bc+ca≠0]的项点坐标是(―,)]
|
如图,已知:正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数y=(k>0,x>0)的图象上,点P(m,n)是函数y=(k>0,x>0)的图象上的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合部分的面积为S.
(1)求B点坐标和k的值;
(2)当S=时,求点P的坐标;
(3)写出S关于m的函数关系式.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com