如果把抛物线向上平移2个单位后得到抛物线.试确定.的值.? 实践与探索 在目前国内最大跨径的钢管混凝土拱桥--永和大桥.是南宁市又一标志性建筑.其拱形图形为抛物线的一部分.在正常情况下.位于水面上的桥拱跨度为350m.拱高为85米.(1)在所给的直角坐标系中(图2).假设抛物线的表达式为.请你根据上述数据求出.的值.并写出抛物线的表达式(不要求写自变量的取值范围..的值保留两个有效数字). (2)七月份汛期将要来临.当邕江水位上涨后.位于水面上的桥拱跨度将会减小.当水位上涨4m时.位于水面上的桥拱跨度有多大? 基础训练三 查看更多

 

题目列表(包括答案和解析)

新定义:若x0=ax02+bx0+c成立,则称点(x0,x0)为抛物线y=ax2+bx+c (a≠0)上的不动点.设抛物线C的解析式为:y=ax2+(b+1)x+(b -1)(a≠0).
(1)抛物线C过点(0,-3);如果把抛物线C向左平移个单位后其顶点恰好在y轴上,求抛物线C的解析式及其上的不动点;
(2)对于任意实数b,实数a应在什么范围内,才能使抛物线C上总有两个不同的不动点?                                           
(3)设a为整数,且满足a+b+1=0,若抛物线C与x轴两交点的横坐标分别为x1, x2,是否存在整数k,使得成立?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

新定义:若x0=ax02+bx0+c成立,则称点(x0,x0)为抛物线y=ax2+bx+c (a≠0)上的不动点.设抛物线C的解析式为:y=ax2+(b+1)x+(b -1)(a≠0).

(1)抛物线C过点(0,-3);如果把抛物线C向左平移个单位后其顶点恰好在y轴上,求抛物线C的解析式及其上的不动点;

(2)对于任意实数b,实数a应在什么范围内,才能使抛物线C上总有两个不同的不动点?                                           

(3)设a为整数,且满足a+b+1=0,若抛物线C与x轴两交点的横坐标分别为x1, x2,是否存在整数k,使得成立?若存在,求出k的值;若不存在,请说明理由.

 

查看答案和解析>>

新定义:若x0=ax02+bx0+c成立,则称点(x0,x0)为抛物线y=ax2+bx+c (a≠0)上的不动点.设抛物线C的解析式为:y=ax2+(b+1)x+(b -1)(a≠0).
(1)抛物线C过点(0,-3);如果把抛物线C向左平移个单位后其顶点恰好在y轴上,求抛物线C的解析式及其上的不动点;
(2)对于任意实数b,实数a应在什么范围内,才能使抛物线C上总有两个不同的不动点?                                           
(3)设a为整数,且满足a+b+1=0,若抛物线C与x轴两交点的横坐标分别为x1, x2,是否存在整数k,使得成立?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

新定义:若x0=ax02+bx0+c成立,则称点(x0,x0)为抛物线y=ax2+bx+c (a≠0)上的不动点.设抛物线C的解析式为:y=ax2+(b+1)x+(b-1),(a≠0)
(1)抛物线C过点(0,-3);如果把抛物线C向左平移数学公式个单位后其顶点恰好在y轴上,求抛物线C的解析式及其上的不动点;
(2)对于任意实数b,实数a应在什么范围内,才能使抛物线C上总有两个不同的不动点?
(3)设a为整数,且满足a+b+1=0,若抛物线C与x轴两交点的横坐标分别为x1,x2,是否存在整数k,使得 数学公式成立?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

作业宝如图,在直角坐标系中,已知点A、B在x轴上,且B(t,0)(-1<t<0),等腰△ABC的顶点B在以AC为直径的半圆D上,点E是直线OC与半圆D除点C以外的另一个交点,连接AE与BC相交于点F.又已知抛物线y=a(x2-2x)向左平移2个单位长度后点O恰与点A重合、点M恰与原点O重合,并把平移后所得抛物线记为H.
(1)求证:BF=BO;
(2)如果抛物线H还经过点F,试用含t的式子表示a;
(3)若AE经过△AOC的内心I,试求出此时经过三点A、F、O的抛物线的解析式;
(4)在(3)的条件下,问在抛物线上是否存在点P,使该点关于直线AF的对称点在x轴上?若存在,请求出所有这样的点的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案