1.解:∵AD⊥AB.∴△ABD是直角三角形. 根据勾股定理得:AD2+AB2=BD2.即32+42=BD2. ∴BD=5, 同理在△DBC中.∵BD⊥BC.∴CD2=BD2+BC2. 即:CB2=132-52=144.∴CB=12 查看更多

 

题目列表(包括答案和解析)

19、已知:如图 AD∥CB,∠A=∠C,若∠ABD=32°,求∠BDC的度数.
有同学用了下面的方法.但由于一时犯急没有写完整,请你帮他添写完整.
解:∵AD∥CB   (已知)
∴∠C+∠ADC=180°(
两直线平行,同旁内角互补
 )
又∵∠A=∠C (已知)
∴∠A+∠ADC=180°(等量代换)
∴AB∥CD (
同旁内角互补,两直线平行

∴∠BDC=
∠DBA
=
32
°(
两直线平行,内错角相等
).

查看答案和解析>>

看图填空:
已知:如图,BC∥EF,AD=BE,BC=EF,试说明 AC=DF
解:∵AD=BE
∴AD+DB=BE+
DB
DB
(等式的性质)
即:AB=
DE
DE

∵BC∥EF
∴∠ABC=∠
DEF
DEF
两直线平行,同位角相等
两直线平行,同位角相等

在△ABC和△DEF中
BC=EF (已知)
(     )(已证)
AB=DE (已证)

∴△ABC≌△DEF(
SAS
SAS

∴AC=DF (
全等三角形的对应边相等
全等三角形的对应边相等
).

查看答案和解析>>

20、看图填空:
已知:如图,BC∥EF,AD=BE,BC=EF.
试说明△ABC≌△DEF.
解:∵AD=BE
AD+DB
=BE+DB
即:
AB
=
DE

∵BC∥EF
∴∠
ABC
=∠
DEF
(两直线平行,同位角相等)
在△ABC和△DEF中,
AB=DE,∠ABC=∠DEF,BC=EF,

∴△ABC≌△DEF(SAS).

查看答案和解析>>

数形结合作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,即“以数解形”;或者借助形的几何直观性来阐明数之间的某种关系,即“以形助数”.
如浙教版九上课本第109页作业题第2题:如图1,已知在△ABC中,∠ACB=90°,CD⊥AB,D为垂足.易证得两个结论:(1)AC•BC=AB•CD   (2)AC2=AD•AB
(1)请你用数形结合的“以数解形”思想来解:如图2,已知在△ABC中(AC>BC),∠ACB=90°,CD⊥AB,D为垂足,CM平分∠ACB,且BC、AC是方程x2-14x+48=0的两个根,求AD、MD的长.
(2)请你用数形结合的“以形助数”思想来解:设a、b、c、d都是正数,满足a:b=c:d,且a最大.求证:a+d>b+c(提示:不访设AB=a,CD=d,AC=b,BC=c,构造图1)
精英家教网

查看答案和解析>>

39、填写推理理由
(1)已知:如图,D、F、E分别是BC、AC、AB上的点,DF∥AB,DE∥AC,试说明∠EDF=∠A.
解:∵DF∥AB(
已知

∴∠A+∠AFD=180°(
两直线平行,同旁内角互补

∵DE∥AC(
已知

∴∠AFD+∠EDF=180°(
两直线平行,同旁内角互补

∴∠A=∠EDF(
同角的补角相等


(2)如图,AB∥CD,∠1=∠2,∠3=∠4,试说明AD∥BE.
解:∵AB∥CD(已知)
∴∠4=∠
BAF
两直线平行,同位角相等

∵∠3=∠4(已知)
∴∠3=∠
BAF
等量代换

∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(
等式的性质

即∠
BAF
=∠
DAC

∴∠3=∠
DAC
等量代换

∴AD∥BE(
内错角相等,两直线平行

查看答案和解析>>


同步练习册答案