若所求的二次函数图象与抛物线y=2x2-4x-1有相同的顶点.并且在对称轴的左侧.y随x的增大而增大.在对称轴的右侧.y随x的增大而减小.则所求二次函数的解析式为( ) (A)y=-x2+2x+4 (B)y=-ax2-2ax-3 (C)y=-2x2-4x-5 (D)y=ax2-2ax+a-3 查看更多

 

题目列表(包括答案和解析)

16、若所求的二次函数图象与抛物线y=2x2-4x-1有相同的顶点,并且在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,则所求二次函数的解析式为(  )

查看答案和解析>>

11、若所求的二次函数图象与抛物线y=2x2-4x-1有相同的顶点,并且在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,则所求二次函数的解析式为
一般形式:y=a(x-1)2-3(a<0),符合条件即可
.(写出一个正确的解析时即可)

查看答案和解析>>

若所求的二次函数图象与抛物线y=2x2-4x-1有相同的顶点,并且在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,则所求二次函数的解析式为(  )
A.y=-x2+2x-5B.y=ax2-2ax+a-3(a>0)
C.y=-2x2-4x-5D.y=ax2-2ax+a-3(a<0)

查看答案和解析>>

若所求的二次函数图象与抛物线y=2x2-4x-1有相同的顶点,并且在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,则所求二次函数的解析式为( )
A.y=-x2+2x+4
B.y=-ax2-2ax-3(a>0)
C.y=-2x2-4x-5
D.y=ax2-2ax+a-3(a<0)

查看答案和解析>>

若所求的二次函数图象与抛物线y=2x2-4x-1有相同的顶点,并且在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,则所求二次函数的解析式为( )
A.y=-x2+2x+4
B.y=-ax2-2ax-3(a>0)
C.y=-2x2-4x-5
D.y=ax2-2ax+a-3(a<0)

查看答案和解析>>


同步练习册答案