抛物线y=-x2+x+7与坐标轴的交点个数为 2个 0个 查看更多

 

题目列表(包括答案和解析)

抛物线y=-x2+
2
x+7
与坐标轴的交点的个数为(  )
A、3个B、2个C、1个D、0个

查看答案和解析>>

抛物线y=ax2+bx+c(a≠0)的顶点为M,与x轴的交点为A、B(点B在点A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m、a、b.若关于x的一元二次方程(m-a)x2+2bx+(m+a)=0有两个相等的实数根.
(1)判断△ABM的形状,并说明理由.
(2)当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形.
(3)若平行于x轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与x轴相切,求该圆的圆心坐标.

查看答案和解析>>

30、抛物线y=-x2+bx+c的部分图象如图所示,请写出与其关系式,图象相关的2个正确结论:
答案不唯一。如:①c=3;②b+c=1;③c-3b=9;④b=-2;⑤抛物线的顶点为(-1,4),或二次函数的最大值为4;⑥方程-x2+bx+c=0的两个根为-3,1;⑦y>0时,-3<x<1;或y<0时,x<-3或x>1;⑧当x>-1时,y随x的增大而减小;或当x<-1时,y随x的增大而增大。等等

(对称轴方程,图象与x正半轴,y轴交点坐标例外).

查看答案和解析>>

抛物线y=ax2+bx+c(a≠0)的顶点为M,与x轴的交点为A、B(点B在点A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m、a、b.若关于x的一元二次方程(m-a)x2+2bx+(m+a)=0有两个相等的实数根.
(1)判断△ABM的形状,并说明理由.
(2)当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形.
(3)若平行于x轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与x轴相切,求该圆的圆心坐标.

查看答案和解析>>

抛物线y=ax2 +bx+c的顶点为P,与x轴的两个交点为M、N(点M在点N的左侧),△PMN的三个内角么∠P、∠M、∠N所对的边分别为p、m、n,且m =n,若关于x的方程(p -m) x2+2nx+(p+m)=0有两个相等的实数根.  
(1)试判断△PMN的形状;  
(2)当顶点P的坐标为(2,-1)时,求抛物线的解析式;  
(3)设抛物线与了轴的交点为Q.
求证:直线y=x-1将四边形MPNQ分成的两个图形的面积相等.

查看答案和解析>>


同步练习册答案