题目列表(包括答案和解析)
如图,点C线段AB上的一个动点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是
A.当C是AB的中点时,S最小
B.当C是AB的中点时,S最大
C.当C为AB的三等分点时,S最小
D.当C为AB的三等分点时,S最大
如图,E,F分别是边长为4的正方形ABCD的边BC,CD上的点,CE=1,CF=,直线FE交AB的延长线于G,过线段FG上的一个动点H作HM⊥AD,HN⊥BG垂足分别为M,N,设HN=x,矩形AMHN的面积为y.
(1)求y与x之间的函数关系式;
(2)当x为何值时,矩形AMHN的面积最大?最大面积是多少?
如图,E、F分别是边长为4的正方形ABCD的边BC、CD上的点,CE=1,CF=,直线FE交AB的延长线于G.过线段FG上的一个动点H作HM⊥AG,HN⊥AD,垂足分别为M、N.设HN=x,矩形AMHN的面积为y.
(1)求y与x之间的函数关系式.
(2)当x为何值时,矩形AMHN的面积最大,最大面积是多少?
已知:如图,A(0,1)是y轴上一定点,B是x轴上一动点,以AB为边,在∠OAB的外部作∠BAE=∠OAB ,过B作BC⊥AB,交AE于点C.?
(1)
当B点的横坐标为时,求线段AC的长;?(2)
当点B在x轴上运动时,设点C的纵、横坐标分别为y、x,试求y与x的函数关系式(当点B运动到O点时,点C也与O点重合);? (3)设过点P(0,-1)的直线l与(2)中所求函数的图象有两个公共点M1(x1,y1)、M2(x2,y2),且x12+x22-6(x1+x2)=8,求直线l的解析式.?下图①是边长分别为4和3的两个等边三角形纸片ABC和叠放在一起(C与重合).
(1)操作:固定△ABC,将△绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE的延长线交AB于点F(如图②).
探究:在图②中,线段BE与AD之间有怎样的大小关系?试证明你的结论.
(2)操作:将图②中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,CF为∠ACB的平分线,平移后的△CDE设为△PQR(如图③).
探究:设△PQR移动的时间为xs,△PQR与△AFC重叠部分的面积为y,求y与x之间的函数关系式,并写出函数自变量x的取值范围.
(3)操作:将图①中△固定,将△ABC移动,使顶点C落在的中点,边BC交于点M,边AC交于点N,设∠AC=α(30°<α<90°)(如图④).
探究:在图④中,线段N·M的值是否随α的变化而变化?如果没有变化,请求出N·M的值;如果有变化,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com