5.如图:⊙M经过O点.并且与x轴.y轴分别交于A.B两点.线段OA.OB的长是方程x2-17x+60=0的两根. 已知点C在劣弧OA上.连结BC交OA于D.当OC2=CD×CB时.求点C的坐标,的条件下.在⊙M上是否存在一点P.使⊿POD的面积=⊿ABD的面积?若存在.求出点P的坐标.若不存在.说明理由. 查看更多

 

题目列表(包括答案和解析)

如图:⊙M经过O点,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA﹥OB)的长是方程x2-17x+60=0的两根.

(1)求线段OA、OB的长;

(2)若点C在劣弧OA上,连结BC交OA于D,当OC2=CD×CB时,求点C的坐标;

(3)若点C在优弧OA上,作直线BC交x轴于D,是否存在△COB和△CDO相似,若存在,直接写出点C的坐标,若不存在,请说明理由.

查看答案和解析>>

如图,半径为6.5的⊙O′经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>OB)的长分精英家教网别是方程x2+kx+60=0的两根.
(1)求A、B两点的距离;
(2)求点A和点B的坐标;
(3)已知点C在劣弧OA上,连接BC交OA于D,当OC2=CD•BC时,求点C的坐标;
(4)在⊙O′上是否存在点P,使△ABD的面积等于△POD的面积,即S△ABD=S△POD?若存在,请求出点P的坐标;如果不存在,请说明理由.注:抛物线y=ax2+bx+c(a≠0)的顶点为(-
b
2a
4ac-b2
4a

查看答案和解析>>

如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,-1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,-2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.
(1)求此抛物线的解析式;
(2)求证:AO=AM;
(3)探究:
①当k=0时,直线y=kx与x轴重合,求出此时数学公式的值;
②试说明无论k取何值,数学公式的值都等于同一个常数.

查看答案和解析>>

如图,已知:如图①,直线y=-数学公式x+数学公式与x轴、y轴分别交于A、B两点,两动点D、E分别从A、B两点同时出发向O点运动(运动到O点停止);对称轴过点A且顶点为M的抛物线y=a(x-k)2+h(a<0)始终经过点E,过E作EG∥OA交抛物线于点G,交AB于点F,连结DE、DF、AG、BG.设D、E的运动速度分别是1个单位长度/秒和数学公式个单位长度/秒,运动时间为t秒.
(1)用含t代数式分别表示BF、EF、AF的长;
(2)当t为何值时,四边形ADEF是菱形?判断此时△AFG与△AGB是否相似,并说明理由;
(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.

查看答案和解析>>

如图,已知:如图①,直线与x轴、y轴分别交于A、B两点,两动点D、E分别从A、B两点同时出发向O点运动(运动到O点停止);对称轴过点A且顶点为M的抛物线(a<0)始终经过点E,过E作EG∥OA交抛物线于点G,交AB于点F,连结DE、DF、AG、BG.设D、E的运动速度分别是1个单位长度/秒和个单位长度/秒,运动时间为t秒.

(1)用含t代数式分别表示BF、EF、AF的长;

(2)当t为何值时,四边形ADEF是菱形?判断此时△AFG与△AGB是否相似,并说明理由;

(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.

 

查看答案和解析>>


同步练习册答案