如图1.已知两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形(菱形ABCD与菱形EFGH的位似比为2:1).BAD=120°.对角线均在坐标轴上.抛物线经过AD的中点M. (1)填空:A点坐标为 .D点坐标为 , (2)操作:如图2.固定菱形ABCD.将菱形EFGH绕D点顺时针方向旋转度角(0°< <90°).并延长OE交AD于点P.延长OH交CD于点Q. 探究1:在旋转的过程中是否存在某一角度.使得四边形AFEP是平行四边形?若存在.请推断出的值,若不存在.说明理由, 探究2:设AP=x.四边形OPDQ的面积为S.求S与x之间的函数关系式. 并指出x的取值范围. 查看更多

 

题目列表(包括答案和解析)

如图①,已知两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形(菱形ABCD与菱形EFGH的位似比为2:1),∠BAD=120°,对角线均在坐标轴上,抛物线y=
13
x2经过AD的中点M.
(1)填空:A点坐标为
 
,D点坐标为
 

(2)操作:如图②,固定菱形ABCD,将菱形EFGH绕O点顺时针方向旋转α度角(0°<α<90°),并延长OE交AD于P,延长OH交CD于Q.
探究1:在旋转的过程中是否存在某一角度α,使得四边形AFEP是平行四边形?若存在,请推断出α的值;若不存在,说明理由;
探究2:设AP=x,四边形OPDQ的面积为s,求s与x之间的函数关系式,并指出x的取值范围.精英家教网

查看答案和解析>>

如图①,已知两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形(菱形ABCD与菱形EFGH的位似比为2:1),∠BAD=120°,对角线均在坐标轴上,抛物线y=数学公式x2经过AD的中点M.
(1)填空:A点坐标为,D点坐标为;
(2)操作:如图②,固定菱形ABCD,将菱形EFGH绕O点顺时针方向旋转α度角(0°<α<90°),并延长OE交AD于P,延长OH交CD于Q.
探究1:在旋转的过程中是否存在某一角度α,使得四边形AFEP是平行四边形?若存在,请推断出α的值;若不存在,说明理由;
探究2:设AP=x,四边形OPDQ的面积为s,求s与x之间的函数关系式,并指出x的取值范围.

查看答案和解析>>

如图①,已知两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形(菱形ABCD与菱形EFGH的位似比为21),∠BAD=120°,对角线均在坐标轴上,抛物线经过AD的中点M.

⑴填空:A点坐标为          ,D点坐标为          ;

⑵操作:如图②,固定菱形ABCD,将菱形EFGH绕O点顺时针方向旋转度角,并延长OE交AD于P,延长OH交CD于Q.

探究1:在旋转的过程中是否存在某一角度,使得四边形AFEP是平行四边形?若存在,请推断出的值;若不存在,说明理由;

探究2:设AP=,四边形OPDQ的面积为,求之间的函数关系式,并指出的取值范围.

 


查看答案和解析>>

如图①,已知两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形(菱形ABCD与菱形EFGH的位似比为2:1),∠BAD=120°,对角线均在坐标轴上,抛物线经过AD的中点M。
(1)填空:A点坐标为______,D点坐标为______;
(2)操作:如图②,固定菱形ABCD,将菱形EFGH绕O点顺时针方向旋转α度角(0°<α<90°),并延长OE交AD于P,延长OH交CD于Q,
探究1:在旋转的过程中是否存在某一角度α,使得四边形AFEP是平行四边形?若存在,请推断出α的值;若不存在,说明理由;
探究2:设AP=x,四边形OPDQ的面积为s,求s与x之间的函数关系式,并指出x的取值范围。

查看答案和解析>>

如图①,已知两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形(菱形ABCD与菱形EFGH的位似比为2:1),∠BAD=120°,对角线均在坐标轴上,抛物线y=x2经过AD的中点M.
(1)填空:A点坐标为______,D点坐标为______;
(2)操作:如图②,固定菱形ABCD,将菱形EFGH绕O点顺时针方向旋转α度角(0°<α<90°),并延长OE交AD于P,延长OH交CD于Q.
探究1:在旋转的过程中是否存在某一角度α,使得四边形AFEP是平行四边形?若存在,请推断出α的值;若不存在,说明理由;
探究2:设AP=x,四边形OPDQ的面积为s,求s与x之间的函数关系式,并指出x的取值范围.

查看答案和解析>>


同步练习册答案