如图14-1.一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动.将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转. (1)如图14-2.当EF与AB相交于点M.GF与BD相交于点N时.通过观察或测量BM.FN的长度.猜想BM.FN满足的数量关系.并证明你的猜想, (2)若三角尺GEF旋转到如图14-3所示的位置时.线段FE的延长线与AB的延长线相交于点M.线段BD的延长线与GF的延长线相交于点N.此时.(1)中的猜想还成立吗?若成立.请证明,若不成立.请说明理由. 湖北省襄樊市襄阳区峪山中学 毕保洪 张良坤 电话:13972273985 查看更多

 

题目列表(包括答案和解析)

如图14,已知抛物线 与x轴的一个交点A的坐标为(-1,0),对称轴为直线 x = 2.

(1)求抛物线与x轴的另一个交点B的坐标;

(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点。已知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,并指出顶点E的坐标;

(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动。设点P运动的时间为t秒。

①当t为     秒是,△PAD的周长最小?当t为     秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)

       ②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

(2013•太仓市二模)如图,已知抛物线y=ax2+bx(a≠0)经过点A(10,0)和B(2,4),点P从原点出发向点A作匀速运动,速度为每秒1个单位,过点P作x轴的垂线,与直线OB交于点E,延长PE到D,使DE=PE,以PD为斜边在直线PD的右侧作等腰Rt△PCD.
(1)a=
-
1
4
-
1
4
;b=
5
2
5
2

(2)若点C恰好落在抛物线上,求点P运动的时间t;
(3)若在点P运动的同时,线段OA上另一个点Q从点A出发向原点作匀速运动,速度为每秒2个单位(当点Q到达原点时运动即结束).过点Q做x轴的垂线,与直线AB交于点F延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰Rt△QMN.求当两个等腰直角三角形恰好有一条边落在同一直线上时对应时刻t的值.

查看答案和解析>>

城市规划期间,欲拆除一电线杆AB(如图),已知与电线杆AB水平距离14米的D处有一等腰梯形大坝CDEF,该梯形的上底CF长为3米,下底DE长为5米,∠CDE=60°,在坝顶C处测得杆顶A的仰角为30°,D、G之间是宽3米的人行道.试问:在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封闭?请说明理由.(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域)精英家教网

查看答案和解析>>

精英家教网如图所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,点M是线段BC上一定点,且MC=8.动点P从C点出发沿C?D?A?B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC为等腰三角形的点P有
 
个.

查看答案和解析>>

精英家教网如图所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,点M是线段BC上一定点,且MC=8.动点P从C点出发沿C→D→A→B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC为等腰三角形的点P有几个?并求出相应等腰三角形的腰长.

查看答案和解析>>


同步练习册答案