25.已知CD是经过BCA顶点C的一条直线.CA=CB.E.F分别是直线CD上的两点.且BEC=CFA=a (1)若直线CD经过BCA的内部.且E.F在射线CD上.请解决下面两个问题: ①如图1.若BCA=90°.a=90°.则BE CF,EF |BE-AF| (填“> .“< 或“= ), ②如图2.若0°<BCA<180°.请添加一个关于a与BCA关系的条件 . 使①中的两个结论仍然成立.并证明两个结论成立, (2)如图3.若直线CD经过BCA的外部.a=BCA.请提出EF.BE.AF三条线段数量关系的合理猜想. 查看更多

 

题目列表(包括答案和解析)

已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点(不重合),且∠BEC=∠CFA=∠a

(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:
①若∠BCA=90°,∠a=90°,请在图1中补全图形,并证明:BE=CF,EF=|BE-AF|;
②如图2,若0°<∠BCA<180°,请添加一个关于∠a与∠BCA关系的条件
∠α+∠BCA=180°
∠α+∠BCA=180°
,使①中的两个结论仍然成立;
(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求证明).

查看答案和解析>>

已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点(不重合),且∠BEC=∠CFA=∠a

(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:
①若∠BCA=90°,∠a=90°,请在图1中补全图形,并证明:BE=CF,EF=|BE-AF|;
②如图2,若0°<∠BCA<180°,请添加一个关于∠a与∠BCA关系的条件________,使①中的两个结论仍然成立;
(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求证明).

查看答案和解析>>

已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点(不重合),且∠BEC=∠CFA=∠a

(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:

①若∠BCA=90°,∠a=90°,请在图1中补全图形,并证明:

BE=CF,EF=|BE-AF|;

②如图2,若0°<∠BCA<180°,请添加一个关于∠a与∠BCA关系的条件________,使①中的两个结论仍然成立;

(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求证明).

查看答案和解析>>

29、如图,CD是经过∠BCA顶点C的一条直线,且直线CD经过∠BCA的内部,点E,F在射线CD上,已知CA=CB且∠BEC=∠CFA=∠α.
(1)如图1,若∠BCA=90°,∠α=90°,问EF=BE-AF,成立吗?说明理由.
(2)将(1)中的已知条件改成∠BCA=60°,∠α=120°(如图2),问EF=BE-AF仍成立吗?说明理由.
(3)若0°<∠BCA<90°,请你添加一个关于∠α与∠BCA关系的条件,使结论EF=BE-AF仍然成立.你添加的条件是
∠α+∠BCA=180°
.(直接写出结论)

查看答案和解析>>

如图,CD是经过∠BCA顶点C的一条直线,且直线CD经过∠BCA的内部,点E,F在射线CD上,已知CA=CB且∠BEC=∠CFA=∠ α.
(1)如图1,若∠BCA=90°,∠ α=90°,问EF=BE﹣AF,成立吗?说明理由.
(2)将(1)中的已知条件改成∠BCA=60°,∠ α=120°(如图2),问EF=BE﹣AF仍成立吗?说明理由.
(3)若0°<∠BCA<90°,请你添加一个关于∠ α与∠BCA关系的条件,使结论EF=BE﹣AF仍然成立.你添加的条件是 _________ .(直接写出结论)

查看答案和解析>>


同步练习册答案