22.在中..边上的高.沿图中线段.将剪开.分成的三块图形恰能拼成正方形.如图1所示. 请你解决如下问题: 在中..边上的高.请你设计两种不同的分割方法.将沿分割线剪开后.所得的三块图形恰能拼成一个正方形.请在图2.图3中.画出分割线及拼接后的图形. 查看更多

 

题目列表(包括答案和解析)

在AABC中,BC=a,BC边上的高h=2a,沿图中线段DE、CF将△ABC剪开,分成的三块图形恰能拼成正方形CFHG,如图(1)所示 请你解决如下问题:
在△A′B′C′中,B′C′=a,B′C′边上的高h=a。请你设计两种不同的分割方法,将△A′B′C′沿分割线剪开后,所得的三块图形恰能拼成一个正方形,请在图(2)、图(3)中,画出分割线及拼接后的图形。

查看答案和解析>>

在直角梯形ABCD中,∠C=90°,高CD=6cm,底BC=10cm(如图1).动点Q从点B出发,沿BC运动到点C停止,运动的速度都是1cm/s.同时,动点P也从B点出发,沿BA→AD运动到点D停止,且PQ始终垂直BC.设P,Q同时从点B出发,运动的时间为t(s),点P运动的路程为y(cm).分别以t,y为横、纵坐标建立直角坐标系(如图2),已知如图中线段为y与t的函数的部分图象.经测量点M与N的坐标分别为(4,5)和(2,
52
)

(1)求M,N所在直线的解析式;
(2)求梯形ABCD中边AB与AD的长;
(3)写出点P在AD边上运动时,y与t的函数关系式(注明自变量的取值范围),并在图2中补全整运动中y关于t的函数关系的大致图象.
精英家教网

查看答案和解析>>

如图,在?ABCD中,AB=13BC=50BC边上的高为12.点P从点B出发,沿B-A-D-A运动,沿B-A运动时的速度为每秒13个单位长度,沿A-D-A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度.PQ两点同时出发,当点Q到达点C时,PQ两点同时停止运动.设点P的运动时间为t(秒).连结PQ

1)当点P沿A-D-A运动时,求AP的长(用含t的代数式表示).
2)连结AQ,在点P沿B-A-D运动过程中,当点P与点B、点A不重合时,记APQ的面积为S.求St之间的函数关系式.
3)过点QQRAB,交AD于点R,连结BR,如图.在点P沿B-A-D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.
4)设点CD关于直线PQ的对称点分别为C′D′,直接写出C′D′BCt的值.

 

查看答案和解析>>

如图①,在?ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B-A-D-A运动,沿B-A运动时的速度为每秒13个单位长度,沿A-D-A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.

(1)当点P沿A-D-A运动时,求AP的长(用含t的代数式表示).
(2)连结AQ,在点P沿B-A-D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.
(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B-A-D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.
(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.

查看答案和解析>>

如图①,在?ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B-A-D-A运动,沿B-A运动时的速度为每秒13个单位长度,沿A-D-A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.
(1)当点P沿A-D-A运动时,求AP的长(用含t的代数式表示).
(2)连结AQ,在点P沿B-A-D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.
(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B-A-D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.
(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.

查看答案和解析>>


同步练习册答案