24.已知△ABC在平面直角坐标系中的位置如图所示. (1)分别写出图中点A和点C的坐标, (2)画出△ABC绕点C按顺时针方向旋转90后的△A`B`C`, (3)求点A旋转到点A`所经过的路线长(结果保留). 查看更多

 

题目列表(包括答案和解析)

如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.

(1)求直线AC的解析式;

(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);

(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角.

【解析】(1)已知A点的坐标,就可以求出OA的长,根据OA=OC,就可以得到C点的坐标,根据待定系数法就可以求出函数解析式.

(2)点P的位置应分P在AB和BC上,两种情况进行讨论.当P在AB上时,△PMB的底边PB可以用时间t表示出来,高是MH的长,因而面积就可以表示出来

(3)本题可以分:当P点在AB边上运动时,当P点在BC边上运动时,两种情况进行讨论,

 

查看答案和解析>>

如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.

(1)求直线AC的解析式;

(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);

(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角.

【解析】(1)已知A点的坐标,就可以求出OA的长,根据OA=OC,就可以得到C点的坐标,根据待定系数法就可以求出函数解析式.

(2)点P的位置应分P在AB和BC上,两种情况进行讨论.当P在AB上时,△PMB的底边PB可以用时间t表示出来,高是MH的长,因而面积就可以表示出来

(3)本题可以分:当P点在AB边上运动时,当P点在BC边上运动时,两种情况进行讨论,

 

查看答案和解析>>

(本小题满分12分)

   如图,在平面直角坐标系中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知,△ABC的面积,抛物线

经过A、B、C三点。

   1.(1)求此抛物线的函数表达式;

   2.(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;

   3.(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分12分)
如图,在平面直角坐标系中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知,△ABC的面积,抛物线
经过A、B、C三点。

【小题1】(1)求此抛物线的函数表达式;
【小题2】(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
【小题3】(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

(本小题满分12分)

    如图,在平面直角坐标系中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知,△ABC的面积,抛物线

经过A、B、C三点。

    1.(1)求此抛物线的函数表达式;

    2.(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;

    3.(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由.

 

查看答案和解析>>


同步练习册答案