为了了解全校1800名学生对学校设置的体操.球类.跑步.踢毽子等课外体育活动项目的喜爱情况.在全校范围内随机抽取了若干名学生. 对他们最喜爱的体育项目进行了问卷调查.将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图. (1)在这次问卷调查中.一共抽查了多少名学生? (2)补全频数分布直方图, (3)估计该校1800名学生中有多少人最喜爱球类活动? 查看更多

 

题目列表(包括答案和解析)

(本小题满分6分,请在下列两个小题中,任选其一完成即可)
(1)解方程:x2+3x-2=0;
(2)如图,在边长为1个单位长度的正方形方格纸中建立直角坐标系,△ABC各顶点的坐标为:A(-5,4)、B(-1,1)、C(-5,1).
①将△ABC绕着原点O顺时针旋转90°得到△A′B′C′,请在图中画出△A′B′C′;
②写出A′点的坐标.

查看答案和解析>>

加试题(本小题满分20分,其中(1)、(2)、(3)题各3分,(4)题11分)
(1)一个正数的平方根为3-a和2a+3,则这个正数是
81
81

(2)若x2+2x+y2-6y+10=0,则xy=
-1
-1

(3)已知a,b分别是6-
13
的整数部分和小数部分,则2a-b=
13
13

(4)阅读下面的问题,并解答问题:
1)如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数是多少?(请在下列横线上填上合适的答案)
分析:由于PA,PB,PC不在同一个三角形中,为了解决本题我们可以将△ABP绕顶点A逆时针旋转到△ACP′处,此时可以利用旋转的特征等知识得到:
  ①∠APB=∠AP′C=∠AP′P+∠PP′C;
  ②AP=AP′,且∠PAP′=
60
60
度,所以△APP′为
等边
等边
三角形,则∠AP′P=
60
60
度;
  ③P′C=BP=4,P′P=AP=3,PC=5,所以△PP′C为
直角
直角
三角形,则∠PP′C=
90
90
度,从而得到∠APB=
150
150
度.
 2)请你利用第1)题的解答方法,完成下面问题:
如图2,在△ABC中,∠CAB=90°,AB=AC,E、F为边BC上的点,且∠EAF=45°,试说明:EF2=BE2+FC2

查看答案和解析>>

(本小题满分8分)
据2010年5月8日《杭州日报》报道:今年“五一”黄金周期间,我市实现旅游收入再创历史新高,旅游消费呈现多样化,各项消费所占的比例如图秘所示,其中住宿消费为3438.24万元.
(1)求我市今年“五一”黄金周期间旅游消费共多少亿元?旅游消费中各项消费的中位数是多少万元?
(2)对于“五一”黄金周期间的旅游消费,如果我市2012年要达到3.42亿元的目标,那么,2010年到2012年的平均增长率是多少?
2010年杭州市“五一”黄金周旅游各项消费分布统计图

查看答案和解析>>

(本小题满分5分)
先化简,再选择一个你喜欢又使原式有意义的数代入求值.

查看答案和解析>>

(2011广西崇左,19,7分)(本小题满分7分)解不等式组,并
把它的解集在数轴上表示出来.

查看答案和解析>>


同步练习册答案