已知点P是函数(x>0)图像上一点.PA⊥x轴于点A.交函数(x>0)图像于点M, PB⊥y轴于点B.交函数(x>0)图像于点N.(点M.N不重合) (1)当点P的横坐标为2时.求△PMN的面积, (2)证明:MN|AB, (3)试问:△OMN能否为直角三角形?若能.请求出此时点P的坐标,若不能.请说明理由. (图7) 查看更多

 

题目列表(包括答案和解析)

(本题12分)已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G,∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.

1.(1)求证:△EGB是等腰三角形

2.(2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小            度时,四边形ACDE成为以ED为底的梯形(如图(2)),求此梯形的高。

 

查看答案和解析>>

(本题12分)已知:如图,二次函数的图象与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).

1.(1)求该二次函数的关系式;

2.(2)写出该二次函数的对称轴和顶点坐标;

3.(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;

4.(4)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。

 

查看答案和解析>>

﹣(本题12分)已知二次函数y=x2bxcx轴交于A(-1,0)、B(1,0)两点.
(1)求这个二次函数的关系式;
(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.
(3)半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?

查看答案和解析>>

(本题12分)已知二次函数的图象经过点(0,-3),且顶点坐标为(-1,-4).

(1)求该二次函数的解析式;

(2)设该二次函数的图象与x轴的交点为A、B,与y轴的交点为C,求△ABC的面积.

 

查看答案和解析>>

﹣(本题12分)已知二次函数y=x2bxcx轴交于A(-1,0)、B(1,0)两点.
(1)求这个二次函数的关系式;
(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.
(3)半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?

查看答案和解析>>


同步练习册答案