1) 勾= n.股=(n2-1).得1分 弦5=(n2+1) 得1分 关系:①n2+[(n2-1)]2=[(n2+1)]2 得2分 ②[(n2-1)+(n2+1)]= n2 得2分 证略 得2分 2)股=(m2-4) , 弦=(m2+4) 各得1分 查看更多

 

题目列表(包括答案和解析)

如果一个点能与另外两个点构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点

1.如图1,矩形ABCD中,AB=3,BC=1,请在边CD上作出A,B两点(除C,D以外)的勾股点(要求:尺规作图,保留作图痕迹,不要求写作法).

(1)       2.如图2,矩形ABCD中,

AB=12cm,BC=4 cm,DM=8 cm,AN=5 cm.动点P从D点出发沿着DC方向以1 cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s) ,点H为M,N两点的勾股点,且点H在直线l上.

①当t=4,求PH的长.

②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).

 

查看答案和解析>>

如果一个点能与另外两个点构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点

1.如图1,矩形ABCD中,AB=3,BC=1,请在边CD上作出A,B两点(除C,D以外)的勾股点(要求:尺规作图,保留作图痕迹,不要求写作法).

(1)      2.如图2,矩形ABCD中,

AB=12cm,BC=4 cm,DM=8 cm,AN=5 cm.动点P从D点出发沿着DC方向以1 cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s) ,点H为M,N两点的勾股点,且点H在直线l上.

①当t=4,求PH的长.

②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).

 

查看答案和解析>>

勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了一枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中, 已知∠ACB=90°,∠BAC=30°,AB=4,作△PQR使得∠R=90°,点H在边QR上,点DE在边PR上,点GF在边PQ上,那么△PQR的周长等于___________.

 

查看答案和解析>>

如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.

(1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法);

(2)矩形ABCD中,AB=3,BC=1,直接写出边CD上A, B两点的勾股点的个数;

(3)如图2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.过点P作直线l平行于BC,点H为M,N两点的勾股点,且点H在直线l上.求PH的长.

 

查看答案和解析>>

如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.

1.如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法);

2.矩形ABCD中,AB=3,BC=1,直接写出边CD上A, B两点的勾股点的个数;

3.如图2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.过点P作直线l平行于BC,点H为M,N两点的勾股点,且点H在直线l上.求PH的长

 

查看答案和解析>>


同步练习册答案