如图①.②.点O在直线MN上.以点O为圆心.4为半径的圆与直线MN交于A.B两点.AC为弦.CAO=60°.P是直线MN上的一动点. (1)如图①.求AOC的度数, (2)如图②.连结CP.当CP与⊙O相切时.求PO的长, (3)如图③.当点P在直径AB上时.CP的延长线与⊙O相交于点Q.问PQ为何值时.△ACQ是等腰三角形? 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,已知直线MN与以AB为直径的半圆相切于点C,在MN上是否存在点D,使AB•CD=AC•BC(  )
A、不存在B、存在一点C、存在二点D、存在无数点

查看答案和解析>>

19、如图,关于直线l对称的两个圆的半径都为1,等边三角形ABC,LMN的顶点分别在两圆上,AB⊥l,MN∥l,将l左侧的图形进行平移、旋转或翻折变换(以下所述“变换”均值这3种变换之一),可以与l右侧的图形重合.
(1)通过两次变换,不难实现上述重合的目的.例如,将l左侧图先绕圆心O1,按逆时针方向旋转
30°
度,再沿l翻折,就可与右侧的图形重合;又如,将l左侧图形先向右平移2个单位,再绕圆心按顺时针方向旋转
30°
度,就与右侧图形重合;
(2)能否将l左侧图形只进行一次变换,就可使它与l右侧图形重合?如果能,请说明变换过程;如果不能,请你设计一种“将l左侧图形先沿着过点O1的某直线翻折,再向右适当平移”(两次变换)即可与右侧图形重合的方案.(画出该直线并予以说明)

查看答案和解析>>

如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.
思考
如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α.
当α=
 
度时,点P到CD的距离最小,最小值为
 

探究一
在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=
 
度,此时点N到CD的距离是
 

探究二
将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.
(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;
(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.
(参考数椐:sin49°=
3
4
,cos41°=
3
4
,tan37°=
3
4
.)
精英家教网

查看答案和解析>>

如图,点A、B在直线MN上,AB=11cm,⊙A、⊙B的半径均为1cm,⊙A以每秒2cm的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(s)之间的关系式为r=1+t(t≥0),当点A出发后
3秒、
11
3
秒、11秒、13
3秒、
11
3
秒、11秒、13
s两圆相切.

查看答案和解析>>

如图1,在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a>0)的图像顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为(3,0),OB=OC,tan∠ACO=.

1.求这个二次函数的解析式;

2.若平行于x轴的直线与该抛物线交于点M、N,且以MN为直径的圆与x轴相切,求该圆的半径长度;Com]

3.如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P运动到什么位置时,△AGP的面积最大?求此时点P的坐标和△AGP的最大面积.

 

 

 

查看答案和解析>>


同步练习册答案