23.已知y=ax2+bx+c与y轴交于点A(0.3).与x轴分别交于B(1.0).C(5.0)两点. (1)求此抛物线的解析式, (2)若点D为线段OA的一个三等分点.求直线DC的解析式, (3)若一个动点P自OA的中点M出发.先到达x轴上的某点(设为点E).再到达抛物线的对称轴上某点(设为点F).最后运动到点A.求使点P运动的总路径最短的点E.点F的坐标.并求出这个最短总路径的长. 查看更多

 

题目列表(包括答案和解析)

已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是(-
b
2a
4ac-b2
4a
)
,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式
 
,伴随直线的解析式
 

(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是
 

(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.

查看答案和解析>>

已知二次函数y=ax2+bx+c的图象经过点A(-1,-1)和点B(3,-9),而且点C(m,m)、D(4-m,m)均在图象上,其中m≠2.
(1)求该二次函数的解析式以及实数m的值;
(2)如果动点P位于抛物线上的弧AB与线段AB所围成的区域(不包括边界)内,自点P作与x轴垂直的直线l,l分别与直线AB、抛物线相交于点M、N(M在N的上方),试求线段MN长的最大值.

查看答案和解析>>

已知开口向下的抛物线y=ax2+bx+c与x轴交于M,N两点(点N在点M的右侧),并且M和N两点的横坐标分别是方程x2-2x-3=0的两根,点K是抛物线与y轴的交点,∠MKN不小于90度.
(1)求点M和N的坐标;
(2)求系数a的取值范围;
(3)当y取得最大值时,抛物线上是否存在点P,使得S△MPN=2
3
?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

已知:如图,抛物线y=ax2+bx+c与x轴交于A、B两点,它们的横坐标分别为-1和3,精英家教网与y轴交点C的纵坐标为3,△ABC的外接圆的圆心为点M.
(1)求这条抛物线的解析式;
(2)求图象经过M、A两点的一次函数解析式;
(3)在(1)中的抛物线上是否存在点P,使过P、M两点的直线与△ABC的两边AB、BC的交点E、F和点B所组成的△BEF和△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

已知抛物线y=ax2+bx+c经过点A(1,
32
),其顶点E的横坐标为2,此抛物线与x轴分别交于B(x1,0),C(x2,0)两点,且x2-x1=4.
(1)求此抛物线的解析式及顶点坐标;
(2)连接EB、EC,判断△BEC的形状,并说明理由.

查看答案和解析>>


同步练习册答案