2.连结圆上任意两点的线段叫做弦.经过圆心的弦叫做直径. 查看更多

 

题目列表(包括答案和解析)

连结圆上任意两点的线段叫做       ,圆上任意两点间的部分叫做       .

 

查看答案和解析>>

圆的有关概念:
(1)圆两种定义方式:
(a)在一个平面内线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做
圆心
圆心
.线段OA叫做
半径
半径

(b)圆是所有点到定点O的距离
等于
等于
定长r的点的集合.
(2)弦:连接圆上任意两点的
线段
线段
叫做弦.(弦不一定是直径,直径一定是弦,直径是圆中最长的弦);
(3)弧:圆上任意两点间的部分叫
(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)
(4)等弧:在同圆与等圆中,能够
完全重合
完全重合
的弧叫等弧.
(5)等圆:能够
完全重合
完全重合
的两个圆叫等圆,半径
相等
相等
的两个圆也叫等圆..

查看答案和解析>>

在下图中,点O叫做________OA叫做________

圆上任意两点间的部分叫做________,简称________;连接圆上任意两点的线段叫做________,经过圆心的弦叫做________

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做________,大于半圆的弧叫做________,小于半圆的弧叫做________

能够重合的两个圆叫做________.在同圆或等圆中,能够互相重合的弧叫做________

查看答案和解析>>

连接圆上任意两点的线段叫做________,直径是指经过________的________.

查看答案和解析>>

材料一:在平面直角坐标系中,如果已知A,B两点的坐标为(x1,y1)和(x2,y2),设AB=t,那么我们可以通过构造直角三角形用勾股定理得出结论:(x1-x22+(y1-y22=t2
材料二:根据圆的定义,圆是到定点的距离等于定长的所有点的集合(其中定点为圆心,定长为半径).如果把圆放在平面直角坐标系中,我们设圆心坐标为(a,b),半径为r,圆上任意一点的坐标为(x,y),那么我们可以根据材料一的结论得出:(x-a)2+(y-b)2=r2,这个二元二次方程我们把它定义为圆的方程.比如:以点(3,4)为圆心,4为半径的圆,我们可以用方程(x-3)2+(y-4)2=42来表示.事实上,满足这个方程的任意一个坐标(x,y),都在已知圆上.
认真阅读以上两则材料,回答下列问题:
(1)方程(x-7)2+(y-8)2=81表示的是以
(7,8)
(7,8)
为圆心,
9
9
为半径的圆的方程.
(2)方程x2+y2-2x+2y+1=0表示的是以
(1,-1)
(1,-1)
为圆心,
1
1
为半径的圆的方程; 猜想:若方程x2+y2+Dx+Ey+F=0(其中D,E,F为常数)表示的是一个圆的方程,则D,E,F要满足的条件是
D2+E2-4F>0
D2+E2-4F>0

(3)方程x2+y2=4所表示的圆上的所有点到点(3,4)的最小距离是
3
3
(直接写出结果).

查看答案和解析>>


同步练习册答案