如图, 在△ABC中,AB=5,AC=4,E是AB上一点,AE=2, 在AC上取一点F,使以A.E.F为顶点的三角形与 △ABC相似,那么AF= . 查看更多

 

题目列表(包括答案和解析)

如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取精英家教网E点,使∠ADE=45度.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数关系式;
(3)当:△ADE是等腰三角形时,求AE的长.

查看答案和解析>>

精英家教网在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=
 
度;
(2)设∠BAC=α,∠BCE=β.
①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;
②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.

查看答案和解析>>

29、在△ABC中,AB=AC.
(1)如图1,若∠A=90°,求∠B的度数;
(2)设∠BAC=α,点D是BC上一动点(不与B、C重合),将线段AD绕点A逆时针旋转α后到达AE位置,连接DE、CE,设∠BCE=β,如图2所示.
①当点D在线段BC上运动时,试找出α与β之间的关系,并说明理由;
②当点D在线段BC的反向延长线上运动时,①中的结论是否仍然成立?若成立,请加以说明;若不成立,试找出α与β之间的新关系,并说明理由.

查看答案和解析>>

如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45°.
(1)试判断△ABD与△DCE是否相似并说明理由;
(2)设BD=x,AE=y,求y关于x的函数关系式;并指出当点D在BC上运动(不与B、C重合)时,AE是精英家教网否存在最小值?若存在,求出最小值;若不存在,说明理由;
(3)当△ADE是等腰三角形时,求AE的长.

查看答案和解析>>

在△ABC中,AB=AC,D是直线BC上一点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,AD=AE,∠DAE=∠BAC,连接CE.

(1)如图1,当点D在线段BC上时,求证:△ABD≌△ACE.
(2)设∠BAC=α,∠BCE=β.
①如图1,当点D在线段BC上时,则α,β之间有怎样的数量关系?写出证明过程;
②当点D在线段CB的延长线上时,则α,β之间有怎样的数量关系?请在图2中画出完整图形并证明你的结论.

查看答案和解析>>


同步练习册答案