(2009•保定二模)如图所示,Rt△ABC中,∠C=90°,AC=6,BC=12,点P从点A出发沿AC边向点C以每秒1个单位的速度移动,点Q从点C出发沿CB边向点B以每秒1个单位的速度移动,点P、Q同时出发,设移动时间为t秒(t>0).
(1)求t为何值时,PQ∥AB;
(2)设△PCQ的面积为y,求y与t的函数关系式,并求出当t为何值时,△PCQ的面积最大,最大面积是多少;
(3)设点C关于直线PQ的对称点为D,求t为何值时,四边形PCQD是正方形;
(4)当得到正方形PCQD后,点P不再沿AC边移动,但正方形PCQD沿CB边向B点以每秒1个单位的速度移动,当点Q与点B重合时,停止移动,设运动中的正方形为MNQD,正方形MNQD与Rt△ABC重合部分的面积为S,求S与t的函数关系式,并写出自变量的取值范围.