解:(1)△BPQ是等边三角形,当t=2时,AP=2×1=2,BQ=2×2=4,所以BP=AB-AP=6-2=4,所以BQ=BP.又因为∠B=600,所以△BPQ是等边三角形. (2)过Q作QE⊥AB,垂足为E,由QB=2y,得QE=2t·sin600=t,由AP=t,得PB=6-t, 所以S△BPQ=×BP×QE=(6-t)×t=-t2+3t, (3)因为QR∥BA,所以∠QRC=∠A=600.∠RQC=∠B=600.又因为∠C=600,所以△QRC是等边三角形,所以QR=RC=QC=6-2t.因为BE=BQ·cos600=×2t=t,所以EP=AB-AP-BE=6-t-t=6-2t, 所以EP∥QR,EP=QR,所以四边形EPRQ是平行四边形,所以PR=EQ=t,又因为∠PEQ=900, 所以∠APR=∠PRQ=900.因为△APR-△PRQ,所以∠QPR=∠A=600,所以tan600=,即,所以t=,所以当t=时, △APR-△PRQ 查看更多

 

题目列表(包括答案和解析)

如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动.设运动时间为t(s),解答下列问题:
(1)当t为何值时,△BPQ为直角三解形;
(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;
(3)作QR∥BA交AC于点R,连接PR,当t为何值时,△APR∽△PRQ?

查看答案和解析>>


同步练习册答案