21.解:(1)令.得 解得 令.得 ∴ A B C ·················· (2)∵OA=OB=OC= ∴BAC=ACO=BCO= ∵AP∥CB. ∴PAB= 过点P作PE轴于E.则APE为等腰直角三角形 令OE=.则PE= ∴P ∵点P在抛物线上 ∴ 解得. ∴PE=······································································································ 4分) ∴四边形ACBP的面积=AB•OC+AB•PE =······················································································· 6分) (3). 假设存在 ∵PAB=BAC = ∴PAAC ∵MG轴于点G. ∴MGA=PAC = 在Rt△AOC中.OA=OC= ∴AC= 在Rt△PAE中.AE=PE= ∴AP= ······························································ 7分) 设M点的横坐标为.则M ①点M在轴左侧时.则 (ⅰ) 当AMG PCA时.有= ∵AG=.MG= 即 解得 (ⅱ) 当MAG PCA时有= 即 解得: ∴M ···································································································· ② 点M在轴右侧时.则 (ⅰ) 当AMG PCA时有= ∵AG=.MG= ∴ 解得 ∴M (ⅱ) 当MAGPCA时有= 即 解得: ∴M ∴存在点M.使以A.M.G三点为顶点的三角形与PCA相似 M点的坐标为.. ························································· 查看更多

 

题目列表(包括答案和解析)

方程|x-1|+|x-2|=3的解法

  要解方程|x-1|+|x-2|=3,就应设法化去绝对值符号,而要去掉绝对值符号就要判断x-1,x-2是正数还是负数?

  解:令x-1=0得x=1,令x-2=0得x=2,分x<1、1≤x<2、x≥2三种情况化去绝对值符号.

  当x<1时,原方程可化为(1-x)+(2-x)=3,

  解得x=0.

  当1≤x<2时,原方程可化为(x-1)+(2-x)=3,从而1=3,这不可能.说明x的值不可能是1≤x<2.

  当x≥2时,原方程可化为x-1+x-2=3,解得x=3.

  ∴原方程的解为x=0和x=3.

读了上面的内容你有何启发?你能求方程|x+1|+|x+3|=5的解吗?试试看.

查看答案和解析>>


同步练习册答案