如图-2示:反函数图象上取任意两点P.Q.并且分别作x轴.y轴 的平行线.与坐标轴围成的矩形的面积S1.S2有什么关系? . 能力提升: 查看更多

 

题目列表(包括答案和解析)

如图所示,是反比例函数数学公式的图象的一支.根据图象回答下列问题:
(1)图象的另一支在哪个象限?常数k的取值范围是什么?
(2)在这个函数图象的某一支上任意取两点A(x1,y1)和B(x2,y2).如果x1<x2,那么y1和y2有怎样的大小关系?
(3)在函数数学公式的图象上任意取两点A(x1,y1)和B(x2,y2),且x1<0<x2,那么y1和y2的大小关系又如何?

查看答案和解析>>

反比例函数中系数k的几何意义

  反比例函数y=(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=,故ab=k,所以S=|k|(如图(1)).

  这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:

  例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.

  解答:=|k|

  =|k|

  故

  例2:如图(3),在y=(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=

  |k|=

  |k|=

  S1=S2=S3,故选A.

  例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲线在第三象限

  ∴k>0∴k=6

  ∴所以反比例函数的解析式为y=

  根据是述意义,请你解答下题:

  如图(5),过反比例函数y=(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小关系不能确定

查看答案和解析>>

已知两个反比例函数y=
k
x
(k>0)和y=
6
x
在第一象限内的图象如图所示,点P是y=
6
x
图象上任意一点,过点P作PC⊥x轴,PD⊥y轴,垂足分别为C,D.PC、PD分别交y=
k
x
的图象于点A,B.
(1)求证:△ODB与△OCA的面积相等;
(2)记S=S△OAB-S△PAB,当k变化时,求S的最大值,并求当S取最大值时△OAB的面积.

查看答案和解析>>

已知两个反比例函数y=数学公式(k>0)和y=数学公式在第一象限内的图象如图所示,点P是y=数学公式图象上任意一点,过点P作PC⊥x轴,PD⊥y轴,垂足分别为C,D.PC、PD分别交y=数学公式的图象于点A,B.
(1)求证:△ODB与△OCA的面积相等;
(2)记S=S△OAB-S△PAB,当k变化时,求S的最大值,并求当S取最大值时△OAB的面积.

查看答案和解析>>

已知两个反比例函数y=(k>0)和y=在第一象限内的图象如图所示,点P是y=图象上任意一点,过点P作PC⊥x轴,PD⊥y轴,垂足分别为C,D.PC、PD分别交y=的图象于点A,B.
(1)求证:△ODB与△OCA的面积相等;
(2)记S=S△OAB-S△PAB,当k变化时,求S的最大值,并求当S取最大值时△OAB的面积.

查看答案和解析>>


同步练习册答案