(1)由△PCD为等边三角形.故∠PCD=∠PDC=60 o.从而∠ACP=∠PBD=120 o,若要△ACP∽△PDB.必要.从而 AC·DB=PC·PD.又PC=PD=CD.故CD2=AC·DB,(2)由△PDB∽△ACD.所以∠A=∠DPB.∠APC=∠B.又因为∠A+∠APC+ACP=180o.故∠A+∠APC=60o.又∠CPD=60o.故∠APB=∠APC+∠BPD+∠CPD=120o 查看更多

 

题目列表(包括答案和解析)

勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为
440
440

查看答案和解析>>

21、如图所示,△ABC为等边三角形,以AB为边向外作△ABD,使∠ADB=120°,然后把△BCD绕着点C按顺时针方向旋转60°得到△ACE,如图所示,已知BD=5,AD=3.
(1)由旋转可知线段BC,CD,BD的对应线段分别是什么?
(2)求∠DAE的度数;
(3)求∠BDC的度数;
(4)求CE的长.

查看答案和解析>>

已知:抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.
(1)用配方法求顶点C的坐标(用含m的代数式表示);
(2)“若AB的长为2
2
,求抛物线的解析式.”解法的部分步骤如下,补全解题过程,并简述步骤①的解题依据,步骤②的解题方法;
解:由(1)知,对称轴与x轴交于点D(
 
,0)
∵抛物线的对称性及AB=2
2

∴AD=DB=|xA-xD|=2
2

∵点A(xA,0)在抛物线y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h=xC=xD,将|xA-xD|=
2
代入上式,得到关于m的方程0=(
2
)2+(      )

(3)将(2)中的条件“AB的长为2
2
”改为“△ABC为等边三角形”,用类似的方法求出此抛物线的解析式.

查看答案和解析>>

下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第5个图案中白色正方形的个数为(  )

查看答案和解析>>

下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第8个图案中白色正方形的个数为(  )

查看答案和解析>>


同步练习册答案