题目列表(包括答案和解析)
如果方程ax2+5=(x+2)(x-1)是关于x的一元二次方程,则a__________.
对于关于x的一元二次方程ax2+bx+c=0(a≠0),如果a+b+c=0,那么它的两个根分别为x1=1,x2=.说明如下:
由于a+b+c=0,则c=-a-b
将c=-a-b代入原方程,得ax2+bx-a-b=0.
即a(x2-1)+b(x-1)=0,所以(x-1)(ax+a+b)=0
解得x1=1,x2=.
请利用上面推导出来的结论,快速求解下列方程:
(1)3x2-5x+2=0,x1=________,x2=________;
(2)7x2-4x-3=0,x1=________,x2=________;
(3)13x2+7x-20=0,x1=________,x2=________;
(4)x2-(+1)x+=0,x1=________,x2=________;
(5)2004x2-2003x-1=0,x1=________,x2=________;
(6)(b-c)x2+(c-a)x+(a-b)=0(b≠c),x1=________,x2=________;
(7)请你写出3个一元二次方程,使它们都有一个根是1.
若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:AB=|x1-x2|=
。
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.
若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:AB=|x1-x2|=
。
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com