解:由已知.得 于点. 在中. 在中. (米). 答:建筑物间的距离为米. 查看更多

 

题目列表(包括答案和解析)

已知,如图:在平面直角坐标系中,O是坐标原点,△ABC的三个顶点坐标分别是A(1,2),B(﹣3,0),C(3,0),直线AC与反比例函数y=在第一象限内的图象相交于A,M两点.
(1)求反比例函数y=的解析式;
(2)连接BM交AO于点N,求证:N是△ABC的重心;
(3)在直线AC上是否存在一点P使△BPO的周长L取得最小值?
若存在,求出L的最小值并证明;
若不存在,请说明理由.

查看答案和解析>>

已知,如图(a),抛物线y=ax2+bx+c经过点A(x1,0),B(x2,0),C(0,-2),其顶点为D.以AB为直径的⊙M交y轴于点E、F,过点E作⊙M的切线交x轴于点N.∠ONE=30°,|x1-x2|=8.

(1)求抛物线的解析式及顶点D的坐标;

(2)连结AD、BD,在(1)中的抛物线上是否存在一点P,使得△ABP与△ADB相似?若存在,求出P点的坐标;若不存在,说明理由;

(3)如图(b),点Q为上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AH·AQ是否为定值?若是,请求出这个定值;若不是,请说明理由.

查看答案和解析>>

已知:在直角坐标系中,A、B两点是抛物线y=x2-(m-3)x-m与x轴的交点(A在B的右侧),x1、x2分别是A、B两点的横坐标,且|x1-x2|=3.
(1)当m>0时,求抛物线的解析式.
(2)如果(1)中所求的抛物线与y轴交于点C,问y轴上是否存在点D(不含与C重合的点),使得以D、O、A为顶点的三角形与△AOC相似?若存在,请求出D点的坐标;若不存在,请说明理由.
(3)一次函数y=kx+b的图象经过抛物线的顶点,且当k>0时,图象与两坐标轴所围成的面积是
15
,求一次函数的解析式.

查看答案和解析>>

已知:如图,在平面直角坐标系xOy中,直线y=-
34
x+6
与x轴、y轴的交点分别为A、B,精英家教网将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.
(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;
(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;
(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA-QO|的取值范围.

查看答案和解析>>

已知:反比例函数y=
k
x
(k≠0)
经过点B(1,1).
(1)求该反比例函数解析式;
(2)连接OB,再把点A(2,0)与点B连接,将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,写出A′B′的中点P的坐标,试判断点P是否在此双曲线上,并说明理由;
(3)若该反比例函数图象上有一点F(m,
3
2
m-1
)(其中m>0),在线段OF上任取一点E,设E点的纵坐标为n,过F点作FM⊥x轴于点M,连接EM,使△OEM的面积是
2
2
,求代数式n2+
2
n-2
3
的值.

查看答案和解析>>


同步练习册答案