题目列表(包括答案和解析)
如图,在
Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△
AED≌△AEF;②
BE+DC=DE;③
BE2+DC2=DE2.其中正确的有A.1个
B.2个
C.3个
D.4个
如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:
①△AED≌△AEF;
②△ABE∽△ACD;
③BE+DC=DE;
④BE2+DC2=DE2
其中正确的是
A.②④;
B.①④;
C.②③;
D.①③.
如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:
①△AED≌△AEF;
②△ABE∽△ACD;
③BE+DC=DE;
④BE2+DC2=DE2
以上结论中,一定正确的是
①④
②④
②③
①③
如图,在Rt△ABC中,∠ACB=,BC>AC,以斜边AB所在直线为x轴,以斜边AB上的高所在直线为y轴,建立直角坐标系,若OA2+OB2=17,且线段OA、OB的长度是关于x的一元二次方程x2-mx+2(m-3)=0的两个根.
(1)求C点的坐标;
(2)以斜边AB为直径作圆与y轴交于另一点E,求过A、B、E三点的抛物线的解析式,并画出此抛物线的草图;
(3)在抛物线上是否存在点P,使△ABP与△ABC全等?若存在,求出符合条件的P点的坐标;若不存在,说明理由.
如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=450,将△ADC绕点A顺时针旋转900后,得到△AFB,连接EF,下列结论:(1)△AED≌△AEF;(2)△ABE∽△ACD;(3)BE+DC=DE;(4)BE2+DC2=DE2.其中正确的是( )
A.(2)(4) B.(1)(4 ) C. (2 ) (3 ) D. (1 ) (3 )
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com