23.如图①.已知抛物线y = ax2+bx+ c经过坐标原点.与x轴的另一个交点为A.且顶点M坐标为(1.2). (1)求该抛物线的解析式, (2)现将它向右平移m(m>0)个单位.所得抛物线 与x轴交于C.D两点.与原抛物线交于点P.△CDP 的面积为S.求S关于m的关系式, (3)如图②.以点A为圆心.以线段OA为半径画圆. 第23题图① 交抛物线y = ax2+bx+ c的对称轴于点B.连结AB. 若将抛物线向右平移m(m>0)个单位后.B点的对 应点为B′.A点的对应点为A′点.且满足四边形 为菱形.平移后的抛物线的对称轴与菱形 的对角线BA′交于点E,在x轴上是否存在一点F, 使得以E.F.A′为顶点的三角形与△BAE相似. 若存在求出F点坐标.若不存在说明理由. 第23题图② 查看更多

 

题目列表(包括答案和解析)

如图,已知抛物线y=ax2+bx+c(经过原点)与x轴相交于N点,直线y=kx+4与坐标轴分别相交于精英家教网A、D两点,与抛物线相交于B(1,m)和C(2,2)两点.
(1)求直线与抛物线的表达式;
(2)求证:C点是△AOD的外心;
(3)若(1)中的抛物线,在x轴上方的部分,有一动点P(x,y),设∠PON=α.当sinα为何值时,△PON的面积有最大值?
(4)若P点保持(3)中运动路线,是否存在△PON,使得其面积等于△OCN面积的
916
?若存在,求出动点P的位置;若不存在,请说出理由.

查看答案和解析>>

如图①,已知抛物线y=ax2+bx+c经过坐标原点,与x轴的另一个交点为A,且顶点M坐标为(1,2),
(1)求该抛物线的解析式;
(2)现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P,△CDP的面积为S,求S关于m的关系式;
(3)如图②,以点A为圆心,以线段OA为半径画圆,交抛物线y=ax2+bx+c的对称轴于点B,连接AB,若将抛物线向右平移m(m>0)个单位后,B点的对应点为B′,A点的对应点为A′点,且满足四边形BAA′B′为菱形,平移后的抛物线的对称轴与菱形的对角线BA′交于点E,在x轴上是否存在一点F,使得以E、F、A′为顶点的三角形与△BAE相似?若存在,求出F点坐标;若不存在,说明理由.
精英家教网

查看答案和解析>>

精英家教网如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:
X -3 -2 1 2
y -
5
2
-4 -
5
2
0
(1)求A、B、C三点的坐标;
(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k•DF,若点M不在抛物线P上,求k的取值范围;
若因为时间不够等方面的原因,经过探索、思考仍无法圆满解答本题,请不要轻易放弃,试试将上述(2)、(3)小题换为下列问题解答(已知条件及第(1)小题与上相同,完全正确解答只能得到5分):
(2)若点D的坐标为(1,0),求矩形DEFG的面积.

查看答案和解析>>

如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,-
3
).
(1)求该抛物线的解析式及点A的坐标;
(2)在抛物线上求点P,使S△POA=2S△AOB

查看答案和解析>>

如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,数学公式).
(1)直接写出抛物线的解析式及点A的坐标;
(2)设抛物线上的点Q,使△QAO与△AOB相似(不全等),求出点Q的坐标;
(3)在(2)的条件下,已知点M(0,数学公式),连结QM并延长交抛物线另一点R,在直线QR下方的抛物线上找点P,当△PQR面积最大时,求点P的坐标及S△PQR的最大值.

查看答案和解析>>


同步练习册答案