⊙O中.AB是直径.AC是弦.点B在AC上.且OD=5.∠ADO和弧BC的度数都等于60°.求CD和BD的长. 查看更多

 

题目列表(包括答案和解析)

在⊙O中,AB是直径,CD是弦(非直径),AB⊥CD,现有直线k经过点D旋转交⊙O于P,当直线k经过点A时(如图1)易证:∠DPB+∠C=90°.
(1)当点P在
AC
上时(如图2),“∠DPB+∠C=90°”还成立吗?试证明你的结论;
(2)在直线k绕点D旋转的过程中(不考虑P与B或D重合的情形),∠DPB与∠C有几种不同的数量关系?写出与“∠DPB+∠C=90°”不同的关系式(仍用等式表示),并说明点P相应的位置和理由.

查看答案和解析>>

如图,在⊙S中,AB是直径,AC、BC是弦,D是⊙S外一点,且DC与⊙S相切于点C,连接DS,DB,其中DS交BC于E,交⊙S于F,F为弧BC的中点.
(1)求证:DB=DC;
(2)若AB=10,AC=6,P是线段DS上的动点,设DP长为x,四边形ACDP面积为y.
①求y与x的函数关系式;
②求△PAC周长的最小值,并确定这时x的值.

查看答案和解析>>

如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②AD=CB;③点P是△ACQ的外心;④GP=GD.⑤CB∥GD.
其中正确结论的个数是(    )

A.1          B.2           C.3         D.4

查看答案和解析>>

如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②AD=CB;③点P是△ACQ的外心;④GP=GD.⑤CB∥GD.

其中正确结论的个数是(    )

A.1          B.2           C.3         D.4

 

查看答案和解析>>

如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:

①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.

其中正确的是          (写出所有正确结论的序号).

查看答案和解析>>


同步练习册答案