写出等腰梯形的两个性质 . . 查看更多

 

题目列表(包括答案和解析)

已知:如图,抛物线关于轴对称;抛物线关于y轴对称。抛物线与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线的顶点。HN垂直于x轴,垂足为N,且
(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形_____ ;等腰梯形_____ ;平行四边形_____ ;梯形_____ ;(每种特殊四边形只能写一个,写错、多写记0分)
(2)证明其中任意一个特殊四边形;
(3)写出你证明的特殊四边形的性质。

查看答案和解析>>

已知:如图,抛物线关于轴对称;抛物线关于y轴对称。抛物线与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线的顶点。HN垂直于x轴,垂足为N,且

(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形      ;等腰梯形     ;平行四边形     ;梯形      ;(每种特殊四边形只能写一个,写错、多写记0分)

(2)证明其中任意一个特殊四边形;

(3)写出你证明的特殊四边形的性质。

查看答案和解析>>

在平面上有且只有4个点,这4个点中有一个独特的性质:连结每两点可得到6条线段,这6条线段有且只有两种长度,我们把这四个点称作准等距点,例如正方形ABCD的四个顶点(如图1),有AB=BC=CD=DA,AC=BD,其实满足这样性质的图形有很多,如图2中A、B、C、O四个点,满足AB=BC=CA,OA=OB=OC;如图3中A、B、C、O四个点,满足OA=OB=OC=BC,AB=AC。

(1)如图,若等腰梯形ABCD的四个顶点是准等距点,且AD∥BC。
①写出相等的线段(不再添加字母);
②求∠BCD的度数;
(2)请再画出一个四边形,使它的四个顶点为准等距点,并写出相等的线段。

查看答案和解析>>

我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;
比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;
我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;请解决以下问题:
如图,我们把满足AB=CD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”。

(1) 写出筝形的两个性质(定义除外);
(2) 写出筝形的两个判定方法(定义除外),并选出一个进行证明;

查看答案和解析>>


同步练习册答案