如图.在中.D是BC边的中点.F.E分别是AD及其延长线上的点.CF∥BE. (1)求证:. (2)请连结BF,CE.试判断四边形BECF是何种特殊四边形.并说明理由. 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<<180°),得到△A1B1C

(1)如图1,当ABCB1时,设A1B1BC相交于点D.证明:△A1CD是等边三角形;

(2)如图2,连接AA1BB1,设△ACA1和△BCB1的面积分别为S1S2

求证:S1S2=1∶3;

(3)如图3,设AC的中点为EA1B1的中点为PACa,连接EP.当等于多少度时,EP的长度最大,最大值是多少?

 

查看答案和解析>>

(本小题满分10分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<<180°),得到△A1B1C

(1)如图1,当ABCB1时,设A1B1BC相交于点D.证明:△A1CD是等边三角形;
(2)如图2,连接AA1BB1,设△ACA1和△BCB1的面积分别为S1S2
求证:S1S2=1∶3;
(3)如图3,设AC的中点为EA1B1的中点为PACa,连接EP.当等于多少度时,EP的长度最大,最大值是多少?

查看答案和解析>>

(本小题满分8分)
某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD。已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.

【小题1】(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;
【小题2】(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为,且到AB、BC、AD的距离与到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,清说明理由.

查看答案和解析>>

(本小题满分12分)
如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G。

(1)点C、D的坐标分别是C(       ),D(       );
(2)求顶点在直线y=上且经过点C、D的抛物
线的解析式;
(3)将(2)中的抛物线沿直线y=平移,平移后   
的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。
平移后是否存在这样的抛物线,使⊿EFG为等腰三角形?
若存在,请求出此时抛物线的解析式;若不存在,请说
明理由。

查看答案和解析>>

(本小题满分12分)
如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G。

(1)点C、D的坐标分别是C(       ),D(       );
(2)求顶点在直线y=上且经过点C、D的抛物
线的解析式;
(3)将(2)中的抛物线沿直线y=平移,平移后   
的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。
平移后是否存在这样的抛物线,使⊿EFG为等腰三角形?
若存在,请求出此时抛物线的解析式;若不存在,请说
明理由。

查看答案和解析>>


同步练习册答案