如图1.两等圆⊙O和⊙O′相外切.过O作⊙O′的两条切线OA.OB.A.B是切点.则∠AOB等于( ) A.90° B.60° C.45° D.30° 图1 查看更多

 

题目列表(包括答案和解析)

如图所示,两等圆⊙O和⊙相外切,过O作⊙的两条切线OA、OB,A、B是切点,则∠AOB等于多少?

查看答案和解析>>

如图所示,两等圆⊙O和⊙O′相外切,过O作⊙O′的两条切线OA、OB,A、B是切点,则∠AOB等于
[     ]
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

圆的滚动问题探索:
(1)如图1,一个半径为r的圆沿直线方向从A地滚动到B地,若AB的长为m,则该圆在滚动过程中自转了______圈.(用含的式子表示)
试验:
现有两个半径相等的圆(如图5),将⊙O2固定,⊙O1沿定圆的周围滚动,滚动时两圆保持相外切的位置关系.当⊙O1沿⊙O2周围滚动一周回到原来的位置时,⊙O1自转了2圈,而⊙O1的圆心运动的线路也是一个圆,而这个圆的周长恰好是⊙O1的周长的2倍.
(2)如图2,⊙O1的半径为r,⊙O2的半径为R(R>r),现将⊙O2固定,让,⊙O1沿⊙O2的周围滚动,滚动时两圆保持相外切的位置关系.当⊙O1沿⊙O2沿周围滚动一周回到原来的位置时,⊙O1自转了______圈;
作业宝
(3)如图3,⊙O1,和⊙O2内切,⊙O1的半径为r,⊙O2的半径为R(R>r),现将⊙O2固定,让,⊙O1沿⊙O2的边缘滚动,动时两圆保持相内切的位置关系.当⊙O1沿⊙O2边缘滚动一圈回到原来的位置时,⊙O1自转了______圈.
解决问题:
如图4,一个等边三角形与它的一边相切的圆的周长相等,当此圆按箭头方向从某一位置沿等边三角形的三边作无滑动滚动,直至回到原来的位置时,该圆自转了多少圈?请说明理由.作业宝

查看答案和解析>>

圆的滚动问题探索:
(1)如图1,一个半径为r的圆沿直线方向从A地滚动到B地,若AB的长为m,则该圆在滚动过程中自转了______圈.(用含的式子表示)
试验:
现有两个半径相等的圆(如图5),将⊙O2固定,⊙O1沿定圆的周围滚动,滚动时两圆保持相外切的位置关系.当⊙O1沿⊙O2周围滚动一周回到原来的位置时,⊙O1自转了2圈,而⊙O1的圆心运动的线路也是一个圆,而这个圆的周长恰好是⊙O1的周长的2倍.
(2)如图2,⊙O1的半径为r,⊙O2的半径为R(R>r),现将⊙O2固定,让,⊙O1沿⊙O2的周围滚动,滚动时两圆保持相外切的位置关系.当⊙O1沿⊙O2沿周围滚动一周回到原来的位置时,⊙O1自转了______圈;

(3)如图3,⊙O1,和⊙O2内切,⊙O1的半径为r,⊙O2的半径为R(R>r),现将⊙O2固定,让,⊙O1沿⊙O2的边缘滚动,动时两圆保持相内切的位置关系.当⊙O1沿⊙O2边缘滚动一圈回到原来的位置时,⊙O1自转了______圈.
解决问题:
如图4,一个等边三角形与它的一边相切的圆的周长相等,当此圆按箭头方向从某一位置沿等边三角形的三边作无滑动滚动,直至回到原来的位置时,该圆自转了多少圈?请说明理由.

查看答案和解析>>

(1)如图(1)两个圆中,⊙O1与⊙O2相交于A、B,过B点的直线交两圆于C、D,已知⊙O1与⊙O2的半径分别为6和8,求证:AD:AC的比值为定值;
(2)如图(2),D为线段AB延长线上的一点,△ABC与△BDE都是等边三角形,连接CE并延长,△ABC的外接圆⊙O交CF于M,请解答下列问题:
①求证:BE切⊙O于B;
②若CM=2,MF=6,求⊙O的半径;
③过D作DG∥BE交EF于G,过G作GH∥DE交DF于H,设△ABC、△BDE、△DHG的面积分别为S1、S2、S3,试探究S1、S2、S3之间的关系.

查看答案和解析>>


同步练习册答案