解:(1)∵PC的直线方程为:y=-2x-8. ∴C(-2.0), P. ∴|OC|=2.|OP|=8, |PC|=, |CD|=, |PD|=|OP|+|OD|=8+1=9, PD2=92=81, CD2+PC2=9+72=81. ∴PD2=CD2+PC2 . ∴△DCP为直角三角形.∠DCP=90°.DC⊥PC.CD为直径. ∴PC为⊙D的切线. , ∴S△OCE=4S△CDO. ∴×|OC|×|y|=4×|OC|×|OD|, |y|=4|OD|=4. ∴y=±4, E1(-3.4), E2(-.-4). 查看更多

 

题目列表(包括答案和解析)

如图,P是∠BAC的平分线上的一点,PB⊥AB,PC⊥AC,试说明PB=PC的理由.
解:在△APB和△APC中
∠PAB=∠PAC()
∠ABP=∠ACP()
AP=AP(公共边)

∴△APB≌△APC
(AAS)
(AAS)

∴PB=PC
(全等三角形的对应边相等)
(全等三角形的对应边相等)

查看答案和解析>>

已知:点P是直线MN外一点,点A、B、C是直线MN上三点,分别连接PA、PB、PC.
(1)通过测量的方法,比较PA、PB、PC的大小,直接用“>”连接;
(2)在直线MN上能否找到一点D,使PD的长度最短?如果有,请在图中作出线段PD,并说明它的理论依据;如果没有,请说明理由.

查看答案和解析>>

在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).
(1)当点E与点B重合时,点F恰好与点C重合(如图②),PC的长为
2
5
2
5

(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中(如图①是该过程的某个时刻),请你观察、猜想,并解答:
PF
PE
的值是否发生变化?说明理由.

查看答案和解析>>

在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).
(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;
(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:
①tan∠PEF的值是否发生变化?请说明理由;
②直接写出从开始到停止,线段EF的中点经过的路线长.
精英家教网

查看答案和解析>>

阅读下列材料,并解决后面的问题:
★阅读材料:
(1) 等高线概念:在地图上,我们把地面上海拔高度相同的点连成的闭合曲线叫等高线。
例如,如图1,把海拔高度是50米、100米、150米的点分别连接起来,就分别形成50米、100米、150米三条等高线。
(2) 利用等高线地形图求坡度的步骤如下:(如图2)
步骤一:根据两点A、B所在的等高线地形图,分别读出点A、B的高度;A、B两点
的铅直距离=点A、B的高度差;
步骤二:量出AB在等高线地形图上的距离为d个单位,若等高线地形图的比例尺为
1:n,则A、B两点的水平距离=dn;
步骤三:AB的坡度==

★请按照下列求解过程完成填空,并把所得结果直接写在答题卡上。
某中学学生小明和小丁生活在山城,如图3(示意图),小明每天上学从家A经过B沿着公路AB、BP到学校P,小丁每天上学从家C沿着公路CP到学校P。该山城等高线地形图的比例尺为1:50000,在等高线地形图上量得AB=1.8厘米,BP=3.6厘米,CP=4.2厘米。
(1) 分别求出AB、BP、CP的坡度(同一段路中间坡度的微小变化忽略不计);
(2) 若他们早晨7点同时步行从家出发,中途不停留,谁先到学校?(假设当坡度在之间时,小明和小丁步行的平均速度均约为1.3米/秒;当坡度在之间时,小明和小丁步行的平均速度均约为1米/秒)
解:(1) AB的水平距离=1.8´50000=90000(厘米)=900(米),AB的坡度==
BP的水平距离=3.6´50000=180000(厘米)=1800(米),BP的坡度==
CP的水平距离=4.2´50000=210000(厘米)=2100(米),CP的坡度="  " j  ;
(2) 因为<<,所以小明在路段AB、BP上步行的平均速度均约为1.3米/秒。 因为 k  ,所以小丁在路段CP上步行的平均速度约为  l  米/秒,斜坡 AB的距离=»906(米),斜坡BP的距离=»1811(米),斜 坡CP的距离=»2121(米),所以小明从家到学校的时间==2090(秒)。
小丁从家到学校的时间约为  m  秒。因此,  n  先到学校。

查看答案和解析>>


同步练习册答案