21.解:(Ⅰ)由圆方程配方得(x+1)2+(y-3)2=9. 圆心为C.半径为 r = 3. --2分 若 l与C相切.则得=3. --4分 ∴2=9(1+m2).∴m =. --5分 (Ⅱ)假设存在m满足题意. 由 x2+y2+2x-6y+1=0 .消去x得 x=3-my (m2+1)y2-y+16=0. --7分 由△=2-4(m2+1)·16>0.得m>. --8分 设A(x1.y1).B(x2.y2).则y1+y2=.y1y2=. OA·OB=x1x2+y1y2 =(3-my1)(3-my2)+y1y2 =9-3m(y1+y2)+(m2+1)y1y2 =9-3m·+(m2+1)· =25-=0 --12分 24m2+18m=25m2+25.m2-18m+25=0. ∴m=9±2.适合m>. ∴存在m=9±2符合要求. --14分 查看更多

 

题目列表(包括答案和解析)

为常数,离心率为的双曲线上的动点到两焦点的距离之和的最小值为,抛物线的焦点与双曲线的一顶点重合。(Ⅰ)求抛物线的方程;(Ⅱ)过直线为负常数)上任意一点向抛物线引两条切线,切点分别为,坐标原点恒在以为直径的圆内,求实数的取值范围。

【解析】第一问中利用由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

第二问中,

故直线的方程为,即

所以,同理可得:

借助于根与系数的关系得到即是方程的两个不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

(Ⅱ)设

故直线的方程为,即

所以,同理可得:

是方程的两个不同的根,所以

由已知易得,即

 

查看答案和解析>>

研究问题:“已知关于x的方程ax2-bx+c=0的解集为{1,2},解关于x的方程cx2-bx+a=0”,有如下解法:
解:由ax2-bx+c=0⇒a-b(
1
x
)+c(
1
x
)2=0
,令y=
1
x
,则y∈{
1
2
, 1}

所以方程cx2-bx+a=0的解集为{
1
2
, 1}

参考上述解法,已知关于x的方程4x+3•2x+x-91=0的解为x=3,则
关于x的方程log2(-x)-
1
x2
+
3
x
+91=0
的解为
x=-
1
8
x=-
1
8

查看答案和解析>>

已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,且满足|PQ|=|PA|
(1)求实数a、b间满足的等量关系;
(2)若以P为圆心所作的圆P与圆O有公共点,试求半径取最小值时圆P的方程.

查看答案和解析>>

(2012•奉贤区一模)出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的.在出租车几何学中,点还是形如(x,y)的有序实数对,直线还是满足ax+by+c=0的所有(x,y)组成的图形,角度大小的定义也和原来一样.直角坐标系内任意两点A(x1,y1),B(x2,y2)定义它们之间的一种“距离”:|AB|=|x1-x2|+|y1-y2|,请解决以下问题:
(1)求线段x+y=2(x≥0,y≥0)上一点M(x,y)的距离到原点O(0,0)的“距离”;
(2)定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆周”上的所有点到点Q(a,b)的“距离”均为 r的“圆”方程;
(3)点A(1,3)、B(6,9),写出线段AB的垂直平分线的轨迹方程并画出大致图象.(说明所给图形小正方形的单位是1)

查看答案和解析>>

阅读问题:“已知曲线C1:xy+2x+2=0与曲线C2:x-xy+y+a=0有两个公共点,求经过这两个公共点的直线方程.”
解:曲线C1方程与曲线C2方程相加得3x+y+2+a=0,这就是所求的直线方程.
若曲线x2+2y2=1与曲线3y2=ax+b有3个公共点,且它们不共线,则经过这3个公共点得圆的方程是
3x2+3y2+ax+b-3=0
3x2+3y2+ax+b-3=0

查看答案和解析>>


同步练习册答案