题目列表(包括答案和解析)
如图,,,…,,…是曲线上的点,,,…,,…是轴正半轴上的点,且,,…,,… 均为斜边在轴上的等腰直角三角形(为坐标原点).
(1)写出、和之间的等量关系,以及、和之间的等量关系;
(2)求证:();
(3)设,对所有,恒成立,求实数的取值范围.
【解析】第一问利用有,得到
第二问证明:①当时,可求得,命题成立;②假设当时,命题成立,即有则当时,由归纳假设及,
得
第三问
.………………………2分
因为函数在区间上单调递增,所以当时,最大为,即
解:(1)依题意,有,,………………4分
(2)证明:①当时,可求得,命题成立; ……………2分
②假设当时,命题成立,即有,……………………1分
则当时,由归纳假设及,
得.
即
解得(不合题意,舍去)
即当时,命题成立. …………………………………………4分
综上所述,对所有,. ……………………………1分
(3)
.………………………2分
因为函数在区间上单调递增,所以当时,最大为,即
.……………2分
由题意,有. 所以,
已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存过点(2,1)的直线与椭圆相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.
【解析】第一问利用设椭圆的方程为,由题意得
解得
第二问若存在直线满足条件的方程为,代入椭圆的方程得
.
因为直线与椭圆相交于不同的两点,设两点的坐标分别为,
所以
所以.解得。
解:⑴设椭圆的方程为,由题意得
解得,故椭圆的方程为.……………………4分
⑵若存在直线满足条件的方程为,代入椭圆的方程得
.
因为直线与椭圆相交于不同的两点,设两点的坐标分别为,
所以
所以.
又,
因为,即,
所以.
即.
所以,解得.
因为A,B为不同的两点,所以k=1/2.
于是存在直线L1满足条件,其方程为y=1/2x
如图所示的长方体中,底面是边长为的正方形,为与的交点,,是线段的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求二面角的大小.
【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又平面,平面,∴平面由,,又,∴平面. 可得证明
(3)因为∴为面的法向量.∵,,
∴为平面的法向量.∴利用法向量的夹角公式,,
∴与的夹角为,即二面角的大小为.
方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点、,
∴,又点,,∴
∴,且与不共线,∴.
又平面,平面,∴平面.…………………4分
(Ⅱ)∵,
∴,,即,,
又,∴平面. ………8分
(Ⅲ)∵,,∴平面,
∴为面的法向量.∵,,
∴为平面的法向量.∴,
∴与的夹角为,即二面角的大小为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com