20.=x2+2(a-1)x+2在区间上是减函数.求实数a的取值范围.(解题过程要求画出示意图) 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=
x2+1
-ax
,其中a>0,
(1)解不等式f(x)≤1;
(2)证明:当a≥1时,函数f(x)在区间[0,+∞)上是单调函数.

查看答案和解析>>

设函数f(x)=
x2+1
-ax,其中a>0

(1)解不等式f(x)≤1
(2)求证:当a≥1时,函数f(x)在区间[0,+∞)上是单调函数
(3)求使f(x)>0对一切x∈R*恒成立,求a的取值范围.

查看答案和解析>>

设函数f(x)=
x2+1
-ax
,其中a>0,
(1)解不等式f(x)≤1;
(2)证明:当a≥1时,函数f(x)在区间[0,+∞]上是单调函数.

查看答案和解析>>

设函数f(x)=|x2-4x-5|.

(1)在区间[-2,6]上画出函数f(x)的图像(如图);

(2)设集合A={x|f(x)≥5},B=(-∞,-2]∪[0,4]∪[6,+∞).试判断集合A和B之间的关系,并给出证明;

(3)当k>2时,求证:在区间[-1,5]上,y=kx+3k的图像位于函数f(x)图像的上方.

查看答案和解析>>

设函数f(x)=x2+2(a-1)x+2在区间(-∞,上是减函数,则实数a的范围是

A.a≥-3        B.a≤-3            C.a≥3          D.a≤5

 

查看答案和解析>>


同步练习册答案